- 1. Explanation:
- (a) Design a voltage follower by an OP amp and describe its advantages.
- (b) Design a superdiode by an OP amp and show its transfer characteristic.
- (c) Describe the base-width modulation effect in BJT.
- (d) Draw the current flow in a PMOS transistor biased to operate in saturation region and explain the channel length modulation effect and the effect on output resistance of MOSFET.
- 2. A voltage amplifier has the transfer function

$$A_{v} = \frac{100}{(1+j\frac{f}{10^{4}})(1+\frac{10^{2}}{jf})}$$

Using the bode plots for low-pass and high-pass STC network, sketch a Bode for | Av | . Give approximate values for the gain magnitude at f=10Hz, 10^{2} Hz, 10^{3} Hz, 10^{4} Hz, 10^{5} Hz, 10^{6} Hz, and 10^{7} Hz. Find the bandwidth of the amplifier. (10%)

3. The enhancement transistors in Figure 1 have $I_D=100(V_{GS}-3)^2$ uA. The depletion transistor has $I_D=100(V_{GS}+1)^2$ uA. Determine I_{DI} . (10%)

4. We wish to analyze the circuit in Figure 2 to determine the voltages at all nodes and the currents through all branches. (10%)

(20%)

- 5. Determine the following voltages in $dB_{\mu}V$ and dB_{m} : (10%) (a) 30 V (b) 0.5 μ V (c) 23 mV
- 6. A 50 Ω oscillator is attached to the high-impedance input of an oscilloscope (C_{in}=47 pF, R_{in}=1 M Ω). The source is tuned to 100MHz and the level set to -30 dB_m. Determine the voltage level (peak) of the sinusoid seen on the oscilloscope.

(10%)

7. Construct the pole-zero diagram for the circuits shown in Figure 3 (a) and 3(b).

(10%)

Figure 3(a) Figure 3(b)

8. For the Hartley oscillator of Figure 4, evaluate the frequency of oscillation and state the oscillation condition in the equivalent form. (10%)

9. Design a BJT current mirror with a nominal current transfer ratio of unity. Let the transistors have $I_s=10^{-15}$ A, $\beta=100$, and $V_A=100$ V. For $I_{REF}=1$ mA. Find I_O when $V_O=5$ V. Also find the output resistance. (10%)