國立臺南大學 104 學年度 電機工程學系碩士班 招生考試 電子學 試題卷

1．Explanation：
（a）Design a voltage follower by an OP amp and describe its advantages．
（b）Design a superdiode by an OP amp and show its transfer characteristic．
（c）Describe the base－width modulation effect in BJT．
（d）Draw the current flow in a PMOS transistor biased to operate in saturation region and explain the channel length modulation effect and the effect on output resistance of MOSFET．

2．A voltage amplifier has the transfer function

$$
A_{v}=\frac{100}{\left(1+j \frac{f}{10^{4}}\right)\left(1+\frac{10^{2}}{j j^{2}}\right)}
$$

Using the bode plots for low－pass and high－pass STC network，sketch a Bode for $|\mathrm{Av}|$ ．Give approximate values for the gain magnitude at $f=10 \mathrm{~Hz}, 10^{2} \mathrm{~Hz}, 10^{3} \mathrm{~Hz}$ ， $10^{4} \mathrm{~Hz}, 10^{5} \mathrm{~Hz}, 10^{6} \mathrm{~Hz}$ ，and $10^{7} \mathrm{~Hz}$ ．Find the bandwidth of the amplifier．(10%)

3．The enhancement transistors in Figure 1 have $I_{D}=100\left(V_{G S}-3\right)^{2} \mathrm{uA}$ ．The depletion transistor has $I_{D}=100\left(V_{G S}+1\right)^{2} \mathrm{uA}$ ．Determine $I_{D I}$ ．

Figure 1
4．We wish to analyze the circuit in Figure 2 to determine the voltages at all nodes and the currents through all branches．
（10\％）

Figure 2
5. Determine the following voltages in $\mathrm{dB}_{\mu} \mathrm{V}$ and dB_{m} :
(a) 30 V
(b) $0.5 \mu \mathrm{~V}$
(c) 23 mV
6. A 50Ω oscillator is attached to the high-impedance input of an oscilloscope $\left(\mathrm{C}_{\mathrm{in}}=47\right.$ $\left.\mathrm{pF}, \mathrm{R}_{\mathrm{in}}=1 \mathrm{M} \Omega\right)$. The source is tuned to 100 MHz and the level set to $-30 \mathrm{~dB}_{\mathrm{m}}$. Determine the voltage level (peak) of the sinusoid seen on the oscilloscope.
7. Construct the pole-zero diagram for the circuits shown in Figure 3 (a) and 3(b).

Figure 3(a)
Figure 3(b)
8. For the Hartley oscillator of Figure 4, evaluate the frequency of oscillation and state the oscillation condition in the equivalent form.

Figure 4
9. Design a BJT current mirror with a nominal current transfer ratio of unity. Let the transistors have $\mathrm{I}_{\mathrm{s}}=10^{-15} \mathrm{~A}, \beta=100$, and $\mathrm{V}_{\mathrm{A}}=100 \mathrm{~V}$. For $\mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$. Find I_{O} when $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$. Also find the output resistance.

