國立臺南大學 104 學年度 電機工程學系碩士班 招生考試 電磁學 試題卷

- 1. A rectangular block has dimensions $1\times1\times10$ cm. (a) What is the resistance of the block measured between the two square ends? (b) What is the resistance between two opposing rectangular faces? The conductivity of the block is 10^7 S/m. (10%)
- 2. (a) State Snell's law of refraction. (b) When does critical angle exist at an interface of two nonmagnetic media? (10%)
- 3. A straight, horizontal stretch of metal wire carries a current i = 25 A. What are the magnitude and direction of the magnetic field needed to "float" the wire, that is, to balance its weight? Its linear density is 50 g/m. (10%)
- 4. A parallel-plate capacitor of area S and separation d is charge to a voltage V. The permittivity of the dielectric is ε . Find the stored electrostatic energy. (10%)
- 5. Three charges (+2q, -4q, +2q) are arranged along the z-axis at z = d/2, z = 0, and z = -d/2, respectively. Determine V and E at a distant point $P(R, \theta, \phi)$. (10%)
- 6. Write Maxwell's equations in (a) point form and (b) integral form (c) explain the significance of each equation. (10%)
- 7. If the electric field intensity in space is given as $\vec{E} = E_0 \cos \theta \hat{a}_r E_0 \sin \theta \hat{a}_\theta$, find (a) $\nabla \cdot \vec{E}$ (b) $\nabla \times \vec{E}$ (10%)
- 8. A uniform plane wave in free space is propagating in the $-a_y$ direction at a frequency of 10 MHz. If \vec{E} =400cos ω t \vec{a}_z V/m at y=0, write expressions for:

(a)
$$\vec{E}(x,y,z,t)$$
 (b) $\vec{H}(x,y,z,t)$ (10%)

- 9. Answer the following questions: (20%)
 - (a) What is the significance of the negative sign in the equation $\vec{E} = -\nabla V$? (V: a scalar potential function)
 - (b) Given the scalar potential function $V = 10y(x^3 + 5)$ V, find \vec{E} at the surface y = 0