國立臺灣大學 104 學年度碩士班招生考試試題 358

科目:電子學(B)

358 題號: 乙 頁之第 節次:

1. Please answer the following questions related to Impedance matching for amplification.

(1) Fill in the following table ((a) to (h)) for ideal amplifiers (8%)

Amplifier type	Input impedance	Output impedance	Gain parameters
Voltage	(a)	(e)	A _{voc}
Current	(b)	(f)	A _{isc}
Transconductance	(c)	(g)	G _{msc}
Transresistance	(d)	(h)	R _{moc}

- (2) Draw a circuit of a voltage follower using an OP. Using one of the four amplifiers in (1), describe how the voltage follower works (8%)
- (3) Draw a circuit of a current follower using a BJT. Using one of the four amplifiers in (1), describe how the current follower works (8%)
- (4) An amplifier has an output impedance of $1k\Omega$ and is used to drive an 8Ω load. We want to use a transformer to allow 50% output power on the load. What is the ratio of turns of the transformer, (N_i/N_o) ? (4%)
- 2. Please analysis the following circuit.

Initially, all capacitors are all fully discharged. All diodes and capacitors are ideal. The AC source, Us, is Vsin(ωt). Please answer the following questions

- (1) When $t = \pi/2\omega$, calculate the voltages of the left side and right side for C₁ to C₄. (8%)
- (2) When $t = 2\pi/\omega$, calculate the voltages of the left side and right side for C_1 to C_4 . (8%)
- (3) Electrolyte capacitors are used for C₁ and C₄. Assign polarity and voltage rating all of them. (12%)

見背面

國立臺灣大學 104 學年度碩士班招生考試試題

題號: 358 科目:電子學(B)

題號: 358 共 2 頁之第 2 頁 節次: 4

3.

(1) Design a non-inverting active low pass filter circuit that has a gain of ten at low frequencies, a high frequency cut-off or corner frequency of 159Hz and an input impedance of $10K\Omega$. Please assign the values of R2 and C. (5%)

- (2) Design a simplified non-inverting amplifier filter circuit with a C location different from (1). Draw the circuit with component values assigned. (6%)
- (3) Design an equivalent inverting amplifier filter circuit. Draw the circuit with component values assigned. (6%)
- (4) Following (3), what does the circuit become if the feedback resistance is removed? (2%)
- 4. Consider the circuit shown below:
- (a) Derive an expression for the transfer function $H(f) = V_{out} / V_{in} v$ (5%)
- (b) Derive an expression for the resonant frequency of this circuit. (5%)
- (c) What type of the filter the transfer function H(f) is? (5%)
- (d) Draw the Bold plot for the magnitude of the transfer function H(f) when $R = 10 \Omega$, L = 10 mH, and $C = 10 \Omega$ 0.02 µF. (5%)
- (e) Draw the plot for the impedance magnitude the source voltage V_{in} sees. (5%)

