國立臺北科技大學 104 學年度碩士班招生考試 系所組別:3510 化學工程與生物科技系化學工程碩士班甲組

第三節 工程數學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共6題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Find the general solution for y.

(a)
$$\ln(y') = \ln(x) + y + 2$$
 (10%)

(b)
$$\frac{dy}{dx} = \frac{e^{-x} - y}{x}$$
 (10%)

2. Find the Laplace transform and Fourier transform of the following function f(t). (20%)

- 3. Solve the following initial value problem for y(t). (15%) $y''(t) + 3y'(t) + 2y(t) = f(t), \quad y(0) = 0, \quad y'(0) = 1, \text{ and } \quad f(t) = \begin{cases} 0, & 0 \le t < 2 \\ e^{-t}, & t \ge 2 \end{cases}.$
- 4. Let $\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$. Find a matrix \mathbf{B} such that $\mathbf{B}^2 = \mathbf{A}^5 3\mathbf{A}^3 2\mathbf{A} + 5\mathbf{I}$, where \mathbf{I} is a 2×2 identity matrix. (10%)

1.	** * * * * * * * * * * * * * * * * * *		

5. (a) Find the unit outward normal vector of the surface $z = x^2 + y^2$ at the point (0.5, 0.5, 0.5). (5%)

(b) If $\vec{F} = \frac{1}{3}x^3\vec{i} + \frac{1}{3}y^3\vec{j} + xy\vec{k}$ and \vec{n} is the unit outward normal vector, evaluate $\iint_S (\vec{F} \cdot \vec{n}) dA$, where S is the entire surface of the region bounded by $z = x^2 + y^2$, $z \le 1$ and the plane z = 1. (10%)

6. (a) Solve the following partial differential equation: (15%)

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{for } 0 \le x \le 5, \quad t \ge 0$$
with boundary conditions: $u(0,t) = u(5,t) = 1 \quad \text{for } t > 0$
and initial condition: $u(x,0) = 1 + 10\sin(3\pi x/5) \quad \text{for } 0 \le x \le 5$

(b) How long will it take for the maximum value of u on $0 \le x \le 5$ to be 2? (5%)