考試科目 類性代數 所 別 應用數學系 考試時間 3月1日(日)第二節

1. (20%) Let a, b be two distinct real numbers. Let

$$A = \begin{bmatrix} a^3 & a^2 & a & 1\\ 3a^2 & 2a & 1 & 0\\ b^3 & b^2 & b & 1\\ 3b^2 & 2b & 1 & 0 \end{bmatrix}.$$

Determine all possible values of rank(A).

2. (20%) Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 4 & 1 & 7 \\ 1 & 0 & 3 \end{bmatrix}.$$

(a) Determine if A is diagonalizable or not.

(b) Find matrices Q and D such that D is either a diagonal matrix or a Jordan block matrix, satisfying

 $D=Q^{-1}AQ.$

3. (20%) Let V, W be two vector spaces over a field \mathbb{F} , and let $T: V \to W$ be a linear transformation of T. Suppose U is a subspace of W. Is $T^{-1}(U)$ a subspace of V? Justify your answer.

4. (20%) Let $P_3(\mathbb{R})$ be the set of all real polynomials of degrees at most 3. We define $\langle \cdot, \cdot \rangle \colon P_3(\mathbb{R}) \times P_3(\mathbb{R}) \to \mathbb{R}$ by

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) dx,$$

for all $f(x), g(x) \in P_3(\mathbb{R})$.

(a) What are the conditions need to be satisfied for $\langle \cdot, \cdot \rangle$ to be an inner product on $P_3(\mathbb{R})$?

(b) Suppose that $\langle \cdot, \cdot \rangle$ is indeed a inner product on $P_3(\mathbb{R})$. Apply the Gram-Schmid process to $\{1, x, x^2, x^3\}$ to find an orthogonal basis for $P_3(\mathbb{R})$.

5. (20%) Let V be a finite-dimensional vector space, and let T be a linear operator on V. Suppose that $rank(T) = rank(T^2)$.

(a) Show that $R(T) = R(T^2)$ and $N(T) = N(T^2)$. (R(T)) is the range of T and N(T) is the null space of T.)

(b) Show that $V = R(T) \oplus N(T)$.

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

註