國立臺灣師範大學 104 學年度碩士班招生考試試題

科目:線性代數與代數 適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

Part I: Linear algebra

1. Consider the ordered bases
$$\epsilon = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\},$$

$$\alpha = \left\{ v_1 = \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, v_4 = \begin{bmatrix} 2\\0\\1\\5 \end{bmatrix} \right\} \text{ and }$$

$$\beta = \left\{ w_1 = \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}, w_2 = \begin{bmatrix} 0\\1\\1\\0\\2 \end{bmatrix}, w_3 = \begin{bmatrix} 4\\6\\3\\7 \end{bmatrix}, w_4 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right\} \text{ for } \mathbb{R}^4. \text{ Let } T \text{ be a}$$

linear transformation on \mathbb{R}^4 with $T(v_i) = w_i$, i = 1, 2, 3, 4.

(a) (4 points) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 2 & 1 & 5 \end{bmatrix}$$
, find the inverse of A .

- (b) (9 points) Find the matrix of T with respect to α, ϵ , the matrix of T with respect to α, β and the standard matrix of T.
- (c) (7 points) Find the coordinate of $\begin{bmatrix} 3\\2\\3\\4 \end{bmatrix}$ with respect to α then find $T\begin{pmatrix} \begin{bmatrix} 3\\2\\3\\4 \end{bmatrix} \end{pmatrix}$.
- (d) (10 points) Find $\ker(T)$, $\ker(T)^{\perp}$ and $\operatorname{rank}(T)$. Give your reasoning.
- 2. (10 points) Let $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & -1 & -1 \\ -2 & -1 & -1 \end{bmatrix}$. Find an orthonormal basis consisting of eigenvectors of A.
- 3. (10 points) Let A be an $n \times n$ real matrix. Prove that if λ is an eigenvalue of A with geometric multiplicity d, then λ is also an eigenvalue of A^T with geometric multiplicity d, where A^T is the transpose of A.

(下頁尚有試題)

國立臺灣師範大學104學年度碩士班招生考試試題

Part II: Algebra

- 4. (12 points) Let G be the symmetric group S_5 .
 - (a) Find the number of elements of order 5 in G.
 - (b) Find the number of Sylow 5-subgroups in G.
- 5. (10 points) Let G be a group and let M, H be subgroups of G. Suppose that N is a normal subgroup of M. If M/N is abelian, prove that $(M \cap H)/(N \cap H)$ is abelian.
- 6. (10 points) Let \mathbb{Q} be the field of rational numbers and $\mathbb{Q}[x]$ be the ring of polynomials over \mathbb{Q} . Determine if the polynomial $x^8 + 4x + 1$ is irreducible in $\mathbb{Q}[x]$.
- 7. (18 points) Let $\mathbb Z$ be the ring of integers. Prove or disprove the following statements.
 - (a) 2 is an irreducible element in $\mathbb{Z}[\sqrt{-7}]$.
 - (b) 2 is a prime in $\mathbb{Z}[\sqrt{-7}]$.
 - (c) $\mathbb{Z}[\sqrt{-7}]$ is a principal ideal domain.

(試題結束)