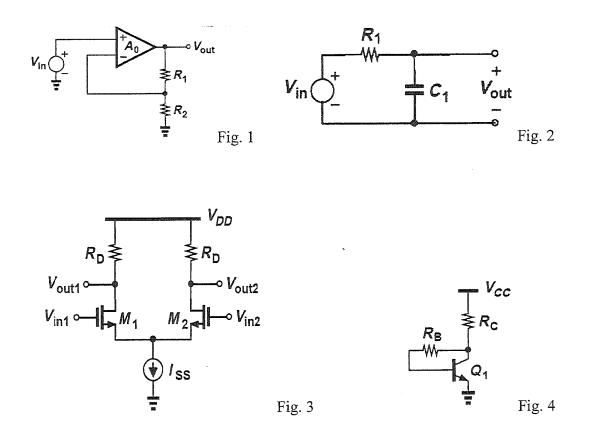
國立臺北大學104學年度碩士班一般入學考試試題

系(所)組別:電機工程學系甲組(晶片設計組)

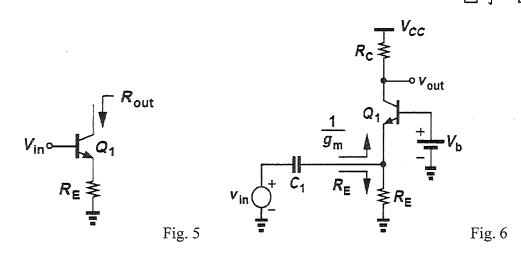

科 目:電子學B

第1頁 共2頁

□可 ☑不可使用計算機

每題 10 分

- 1. The open-loop amplifier gain A_0 is not infinite, derive the transfer function V_{out}/V_{in} of the circuit shown in Fig. 1 considering A_0 .
- 2. (a) Derive the transfer function $V_{out}(s)/V_{in}(s)$ of the circuit shown in Fig. 2, (b) derive its pole frequency.
- 3. For the differential amplifier shown in Fig. 3, (a) Define its common-mode rejection ratio (CMRR)? (b) What is the purpose to design a high CMRR?
- 4. For the circuit shown in Fig. 4, (a) Which mode is Q1 operated? (b) Explain why?
- 5. (a) Draw the small-signal model of the circuit shown in Fig. 5, (b) Derive its output impedance, including the Early effect.
- 6. For the circuit shown in Fig. 6, (a) How do we choose bias voltage V_b ? (b) Why should R_E be much bigger than input impedance $1/g_m$ of Q_1 ?
- 7. The feedback system shown in Fig. 7 has an open-loop amplifier $A_1(s)=A_0/(1+s/\omega_0)$, where $s=j\omega$ and $\omega=2\pi f$, f is the frequency, A_0 and ω_0 are the dc gain and pole frequency of the open-loop amplifier, respectively. Find the close-loop gain and close-loop bandwidth of Y(s)/X(s)?
- 8. Draw the small-signal mode of the circuit shown in Fig. 8 and derive its dc gain, ignoring body effect but including channel length modulation?
- 9. For the circuit shown in Fig. 9, C_{GS}, C_{GD}, C_{DB} and C_{SB} are parasitic capacitances of M1, derive the poles at nodes X and Y?
- 10. Derive the open-loop gain and feedback gain of the close loop system shown in Fig. 10?


國立臺北大學104學年度碩士班一般入學考試試題

系(所)組別:電機工程學系甲組(晶片設計組)

科

目:電子學B

第2頁 共2頁□□□ ☑不可使用計算機

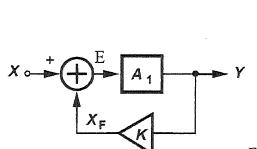


Fig. 7

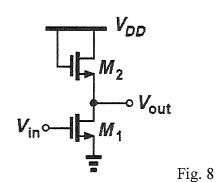
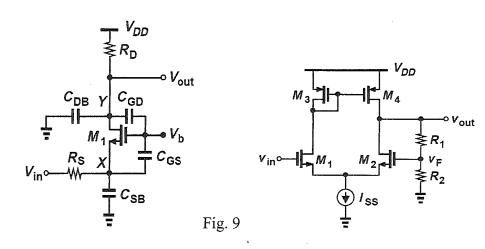



Fig. 10

