科目:工程數學(4532)

考試日期:104年2月7日 第 3 節

系所班别:生物科技學系

組別:生科系丙組

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符

- Multiple choice questions (2% / question)	60%	請使用答案卡作答
---	-----	----------

- We already know that 10% of men and 5% women are color blindness. Now we pick a person randomly from an equal number of men and women in the crowd. What is the probability that this person is female also color blindness?
 - $(A)^{\frac{1}{n}}$
 - (B) =
 - (C)
 - $(D) \frac{1}{2}$
- 2. In a poker game, what is the probability that a five-card hand will contain a triple?

 - (B) $\frac{\binom{13}{4}\binom{4}{4}\binom{13}{4}\binom{4}{4}\binom{4}{4}^2}{\binom{4}{4}\binom{1}{4}\binom{1}{4}}$

 - (D)
- A lot of N items contain M defectives, and n are selected randomly. What is the probability that n items contain m defectives are selected without replacement?
 - (A) crc/-
 - (B) $\frac{G}{G}$
 - (C) CN-1
 - (D) <u>ch ch w</u>
 - 4. Follow the Question 3, what is the probability that n items contain m defectives are selected with replacement?
 - (A) $C_n^m \left(\frac{M}{N}\right)^m \left(1 \frac{M}{N}\right)^{n-m} \quad (m = 0, 1, \dots, n)$
 - (B) $C_n^m \left(\frac{M}{N}\right)^m \quad (m = 0, 1, \dots, n)$
 - (C) $C_n^m \left(1 \frac{M}{N}\right)^{n-m}$ $(m = 0, 1, \dots, n)$ (D) $C_n^m \left(\frac{M}{N}\right)^{n-m}$ $(m = 0, 1, \dots, n)$

科目:工程數學(4532)

考試日期:104年2月7日 第 3節

系所班別:生物科技學系

組別:生科系丙組

第 ン 頁, 共 ク 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 5. A pair of dice is tossed 5 times. What is probability of observing at most a total of 5 in any of the five tosses?
 - (A) $[1-\binom{6}{36}]^5[1-\binom{2}{36}]^5$
 - (B) $1 {9 \choose 36}^5$
 - (C) $\left[1-\binom{6}{36}\binom{2}{36}\right]^5$
 - (D) $\binom{10}{36}^5$
- 6. P(A)=0.8, P(B)=0.6, P(B|A)=0.5, which statement is right?
 - (A) $P(A \cap B) = 0.4$
 - (B) P(AUB)=0.8
 - (C) A and B are independent
 - (D) A and B are mutually exclusive
- 7. A and B run the same experiment independently. The probability of getting a successful experiment was 0.6 and 0.8. What is the probability that one of them was successful?
 - (A) 0.4
 - (B) 0.42
 - (C) 0.44
 - (D) 0.48
- 8. Let X and Y be two independent random variables. Suppose that E[X]=1, E[Y]=2, Var[X]=3, and Var[Y]=4. find $\rho_{X+Y,X-y}$
 - (A) 7
 - (B) -1
 - (C) $\frac{1}{8}$
 - (D) $-\frac{1}{7}$
- 9. The weekly demand for a certain drink, in thousands of liters, at a chanin of convenience stores is a continuous random variable $g(X)=X^2+X-2$, where X has the density function. Find the expected value of the weekly demand for the drink.

$$f(x) = \begin{cases} 2(x-1) & 1 < x < 2 \\ 0 & elsewhere \end{cases}$$

- $(A) \quad \frac{5}{4}$
- (B)
- (C)
- (D)

科目:工程數學(4532)

考試日期:104年2月7日 第 3節

系所班別:生物科技學系

組別: 生科系丙組

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相

10. The joint p.d.f of the random variable X,Y be

$$f(x) = \begin{cases} 10xy^2 & 0 < x < y < 1 \\ 0 & elsewhere \end{cases}, \text{ find } P(Y > 0.5 | X = 0.25)$$

- (A)
- (B)
- (C)
- (D) $\frac{8}{5}$

11. Which function is p.d.f

Which function is p.d.f
$$(A) \quad f_{1}(x) = \begin{cases} \frac{-5(x-1)}{2} & , 0 \le x < 1 \\ (x-1)^{2} & , 1 < x < 2 \\ 0 & , elsewhere \end{cases}$$

$$(B) \quad f_{2}(x) = \begin{cases} 3 & , 0 \le x \le \frac{1}{2} \\ -1 & , \frac{1}{2} \le x \le 1 \\ 0 & , elsewhere \end{cases}$$

$$(C) \quad f_{3}(x) = \begin{cases} \frac{(x+1)}{2} & , 0 \le x \le 1 \\ 0 & , otherwise \end{cases}$$

$$(D) \quad f_{4}(x) = \begin{cases} 2 - 4x & , 0 \le x \le \frac{1}{2} \\ 4x - 2 & , \frac{1}{2} \le x \le 1 \\ 0 & , elsewhere \end{cases}$$

(B)
$$f_2(x) = \begin{cases} 3 & , 0 \le x \le \frac{1}{2} \\ -1 & , \frac{1}{2} \le x \le 1 \\ 0 & , elsewhere \end{cases}$$

(C)
$$f_3(x) = \begin{cases} \frac{(x+1)}{2} & ,0 \le x \le 1 \\ 0 & ,otherwise \end{cases}$$

(D)
$$f_4(x) = \begin{cases} 2 - 4x & , 0 \le x \le \frac{\pi}{2} \\ 4x - 2 & , \frac{\pi}{2} \le x \le 1 \\ 0 & elsewhere \end{cases}$$

12. Let X and Y have the jpdf f given by

$$f(x,y) = ce^{\frac{x^2-xy+y^2}{2}}, -\infty < x, y < \infty, \text{ find c, fx, fy.}$$

$$f(x,y) = ce^{-\frac{x^3 - xy + y^2}{2}}, -\infty < x, y < \infty, \text{ find c, fx,fy.}$$
(A) $c = \frac{\sqrt{5}}{2\pi}, fx = \frac{\sqrt{3}}{2\pi}e^{-3x^3/8}, fy = \frac{\sqrt{5}}{2\pi}e^{-3y^2/8}, -\infty < x, y < \infty$

(B)
$$c = \frac{\sqrt{3}}{\pi}, fx = \frac{1}{2\sqrt{2\pi}}e^{-3x^2/8}, fy = \frac{1}{2\sqrt{2\pi}}e^{-3y^2/8}, -\infty < x, y < \infty$$

(C)
$$c = \frac{\sqrt{3}}{4\pi}, fx = \frac{\sqrt{3}}{2\sqrt{2\pi}}e^{-3x^2/8}, fy = \frac{\sqrt{3}}{2\sqrt{2\pi}}e^{-3y^3/8}, -\infty < x, y < \infty$$

(D)
$$c = \frac{\sqrt{8}}{8\pi}, fx = \frac{\sqrt{8}}{4}e^{-8\pi^2/8}, fy = \frac{\sqrt{8}}{4}e^{-8y^2/8}, -\infty < x, y < \infty$$

13. An urn contains 3 black balls, 2 white balls, and 3 red balls, and 2 balls are chosen without replacement. Let x = the number of black balls and y = the number of white balls. The joint distribution of the numbers of black and

white balls in the sample is
$$\frac{(x)(x)(x-x-y)}{(x-x-y)}$$
, $0 \le x \le 2$, find $P(1 \le x+y \le 2)$

- $(A) \frac{1}{2}$
- (B)
- (C)
- (D)

斜目:工程數學(4532)

考試日期:104年2月7日 第 3節

系所班別:生物科技學系

組別:生科系丙組

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

- 14. Let X $\sim Exp(\lambda)$, and Y $\sim Exp(\lambda)$ be independent. Let Z=x+y, find the fz(z)
 - (A) λε^{-λε}
 - (B) $\lambda^2 z e^{-\lambda z}$
 - (C) $\lambda z e^{-\lambda z}$
 - (D) **ze**^{-λs}
- 15. Let x_1 and x_2 are two independent random variables, the variances of x_1 and x_2 are $\sigma_1^2 = 7$ and $\sigma_2^2 = k$ Given that the variance of $y = 5x_1 - 2x_2$ is 21. Find k=?
 - (A) 5
 - (B) 6
 - (C) 7
 - (D) 8
- 16. A box has 3 balls labeled 1,2 and 3 and two balls are drawn without replacement. Let x=the number on the first ball and y=the number on the second ball. Compute E[X+Y] and E[XY]
 - (A) $E[X + Y] = 2 \mathcal{E}[XY] = \frac{1}{2}$
 - (B) E[X + Y] = 3, $E[XY] = \frac{5}{3}$
 - (C) E[X+Y] = 4, $E[XY] = \frac{11}{3}$
 - (D) E[X + Y] = 6, $E[XY] = \frac{9}{4}$
- 17. Suppose that a measurement has mean μ and variance $\sigma^2=25$. Let X be the average of n such independent measurements. How large should n be so that $P(|X - \mu| < 1) = .957$
 - (A) 95
 - (B) 96
 - (C) 97
 - (D) 98
- 18. Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a continuous random variable X having the probability density function.

$$f(x) = \begin{cases} \frac{x^3}{3} & -1 < x < 2 \\ 0, & elsewhere \end{cases}$$
, Find P(0

- (A)
- (B) $\frac{2}{3}$ (C) $\frac{1}{9}$
- (D)

科目:工程數學(4532)

考試日期:104年2月7日 第 3節

系所班別:生物科技學系

組別:生科系丙組

第5頁,共7頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所紐別與考科是否相符!!

19. The random variables X and Y have joint density function f(x) = 12xy(1-x) 0 < x, y < 1 and equal to zero otherwise. Find E[x], Var(y)

(A)
$$E[x] = \frac{2}{3}$$
, $Var(y) = \frac{1}{19}$

(B)
$$E[x] = \frac{1}{2}$$
, $Var(y) = \frac{1}{20}$

(C)
$$E[x] = \frac{2}{3}$$
, $Var(y) = \frac{1}{20}$

(D)
$$E[x] = \frac{1}{2}$$
, $Var(y) = \frac{1}{18}$

20. The joint density function $f(x,y) = \frac{12}{7}(x^2 + xy), 0 \le x \le 1, 0 \le y \le 1$, which description is not correct?

(A) The marginal density of X is
$$f_x(x) = \frac{12}{7} (x^2 + \frac{x}{2})$$

(B) The marginal density of Y is
$$f_y(y) = \frac{12}{7} (\frac{1}{8} + \frac{y}{2})$$

(C)
$$P(x > y) = \frac{9}{14}$$

(D)
$$P(y > x) = \frac{5}{14}$$

21. Poisson distribution x with λ parameter, find the E[X] and Var[X]

(A)
$$E[X] = e^{\lambda}$$
, $Var[X] = e^{-\lambda}$

(B)
$$E[X] = e^{-\lambda}$$
, $Var[X] = e^{-\lambda}$

(C)
$$E[X]=\lambda$$
, $Var[X]=-\lambda$

(D)
$$E[X]=\lambda$$
, $Var[X]=\lambda$

22. The joint density function $f(x,y) = \begin{cases} ke^{-(2x+3y)} & x > 0, y > 0 \\ 0 & elsewhere \end{cases}$

find k and $P\{0 < X < 1, 0 < Y < 2\}$

(A)
$$k=6$$
, $P{0 < X < 1, 0 < Y < 2} = (1 - e^{-2})(1 - e^{-6})$

(B) k=5
$$P{0 < X < 1, 0 < Y < 2} = (1 - e^{-1})(1 - e^{-5})$$

(C) k=3 P{0 < X < 1,0 < Y < 2} =
$$(1 - e^{-2})(1 - e^{-3})$$

(D) k=2
$$P{0 < X < 1, 0 < Y < 2} = (1 - e^{-1})(1 - e^{-2})$$

23. The random variable K has a normal distribution in a particular interval [0,5], Find the probability of $f(x)=4x^2+4Kx+K+2=0$ with roots.

科目: 工程數學(4532)

考試日期:104年2月7日 第 3 節

系所班別:生物科技學系

組別:生科系丙組

第6頁,共分頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

- 24. The function $F(x) = \begin{cases} 0, & x < 0 \\ Ax^2, & 0 \le x < 1, \text{ find A and P}(0.3 \le x \le 0.7) \\ 1, & x \ge 1 \end{cases}$
 - (A) A=1/4, $P(0.3 \le x \le 0.7)=0.1$
 - (B) A=1/3, $P(0.3 \le x \le 0.7)=0.2$
 - (C) A=1/2, $P(0.3 \le x \le 0.7)=0.3$
 - (D) A=1, $P(0.3 \le x \le 0.7)=0.4$
- 25. Suppose that E[X]=2, E[Y]=1, E[Z]=3, Var[X]=4, Var[Y]=1, Var[Z]=5, Cov(X,Y)=-2, Cov(X,Z)=0, Cov(Y,Z)=2. Let U=3X-2Y+Z, V=X+Y-2Z. find E[U], Var[U] and Cov(U,V)
 - (A) E[U]=2, Var[U]=61 and Cov(U,V)=9
 - (B) E[U]=7, Var[U]=15 and Cov(U,V)=17
 - (C) E[U]=2, Var[U]=15 and Cov(U,V)=-1
 - (D) E[U]=7, Var[U]=61 and Cov(U,V)=2
- 26. Suppose $A=A^{T}A$. which statement is true?
 - (A) A is idempotent,
 - (B) $A I_n$ is idempotent,
 - (C) all eigenvalues of A are 1,
 - (D) $A^k = I_n$ for some $k \in \mathbb{N}$.
- 27. Which statement is false?
 - (A) Similar matrices have the same eigenvalues and eigenvectors.
 - (B) If A and C are n x n matrices and C is invertible and v is an eigenvector of A, then $C^{-1}v$ is an eigenvector of $C^{-1}AC$.
 - (C) Any two n x n diagonal matrices are possible similar.
 - (D) Two similar n x n matrices represent the same linear transformation of Rⁿ into itself relative to two suitably chosen bases of Rⁿ
- 28. Identify which of the following statements is true:
 - (A) Similar matrices always have the same eigenvectors;
 - (B) Similar matrices always have the same eigenvalues;
 - (C) Linear operators on infinite-dimensional vector space has n distinct eigenvalues.
 - (D) Above items are all true.
- 29. Find the rank of the matrix

$$\begin{bmatrix} 1 & 2 & -1 & 3 & 1 \\ 0 & 1 & -3 & 2 & 3 \\ 2 & 3 & 1 & 4 & -1 \\ -1 & 2 & 2 & 2 & -5 \\ 3 & 1 & -1 & 2 & 4 \end{bmatrix}$$

- (A) 1
- (B) 2
- (C) 3
- (D) 4

科目:工程數學(4532)

考試日期:104年2月7日 第 3節

系所班別:生物科技學系

組別:生科系丙組

第 / 頁,共 / 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

30. Find the rank of the matrix

 $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- (A) 1
- (B) 2
- (C) 3
- (D) 4

二、Calculation and Proof Questions 40% 非選擇題請用答案卷作答

1.
$$(10\%) A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$
, $P(A)=3A^5+2A^3+I$, please calculate the eigenvalues of $P(A)$.

2.
$$(15\%) A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 Please calculate the following items.

- (1) Eigenvalues of A (5%)
- (2) Eigenvectors of A (5%)
- (3) Eigenvalues of A² (5%)

3. (15%) Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

- (a) Please prove that A, B, and C are similar, that is, they belong to the same family which can be characterized by a Jordan form. (10%)
- (b) Derive their common Jordan form (an upper triangular matrix). (5%)