國立臺灣大學 104 學年度碩士班招生考試試題

科目:代數節次: 2

題號: 52 共 | 頁之第 | 頁

1. (35%)

- (a) Show that if |G| = 240 and $H \leq G$ with $H \cong A_5$, then $H \triangleleft G$.
- (b) Show that if G is a p-group where p is a prime integer (i.e. $|G| = p^n$, $n \in$
- \mathbb{N}), then the center Z(G) of G is not a trivial subgroup and in particular,
- if G is a non-abelian group of order p^3 , then |Z(G)| = p.
- (c) Classify groups of order 45. (Justify your answers.)
- 2. (30 %) (Justify your answers)
 - (a) Find all $c \in \mathbb{Z}_5$ such that $\mathbb{Z}_5[x]/\langle x^2 + cx + 1 \rangle$ is a field.
 - (b) Determine all ideals of the ring $\mathbb{Z}[x]/\langle 5, x^3 x^2 + x + 4 \rangle$.
 - (c) Prove or disprove the following statements.
 - (1) The polynomial ring $\mathbb{R}[x,y]$ in two variables is a Euclidean domain.
 - (2) The polynomial ring $\mathbb{R}[x]$ in one variable is a PID.
- 3. (a) (17%)
 - (1) Let L: K be an extension and $\alpha \in L$ be algebraic over K. Show that if α is algebraic over K then $K[\alpha] = K(\alpha)$.
 - (2) Show that $x^3 3x + 3$ is irreducible in $\mathbb{Q}[x]$. Suppose that α is a root of $x^3 3x + 3$ in \mathbb{C} . Find the minimal polynomial of $\beta = 1 \alpha + \alpha^2$.
 - (b) (18%) Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
 - (1) Find a primitive generator for L over \mathbb{Q} . Explain your answer in detail.
 - (2) Show that L/\mathbb{Q} is a Galois extension.
 - (3) Determine $\operatorname{Gal}(L/\mathbb{Q})$, lattice of subgroups of this group and the corresponding intermediate fields between L and \mathbb{Q} .

試題隨卷繳回