國立臺灣大學 104 學年度碩士班招生考試試題

題號: 55 科目:幾何 節次: 2

題號: 55 共 [頁之第 | 頁

(1) (20%) Let α be a regular curve in \mathbb{R}^3 parametrized by its arc length. Suppose that its curvature and torsion are both nonzero everywhere. Prove that

$$\frac{\tau}{\kappa} + \left(\frac{1}{\tau}(\frac{1}{\kappa})'\right)' = 0$$
 (Prime means taking derivative.)

iff α is spherical, i.e. it lies entirely on a sphere.

(2) (25%) Consider the punctured disk $D^* = \{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\}$ with the metric

$$\frac{8}{(x^2+y^2)\big(\log(x^2+y^2)\big)^2}(\mathrm{d} x^2+\mathrm{d} y^2)\ .$$

Prove that

$$Area(\Box) = 4\pi - 2(i_1 + i_2 + i_3 + i_4)$$

for a geodesic quadrilateral \square in D^* , where i_1 , i_2 , i_3 and i_4 are the interior angles at the vertices of \square . (A quadrilateral is a polygon with four edges and four vertices.)

(3) Let S be a surface in \mathbb{R}^3 , and p be a point on S. Let $\{v,w\}$ be an orthonormal basis for $T_p(S)$. Consider

$$\gamma(s) = \exp_p(s \mathbf{v}) ,$$

$$\psi(s, t) = \exp_{\gamma(s)}(t \mathbf{w}(s))$$

where w(s) is the parallel transport of w along $\gamma(s)$.

- (a) (5%) Prove that there exists some $\varepsilon>0$ such that $\psi:\{(s,t)\,|\,s^2+t^2<\varepsilon^2\}\to S$ is a diffeomorphism onto an open neighborhood of p in S.
- (b) (15%) Let E(s,t), F(s,t) and G(s,t) be the coefficients of the first fundamental form in terms of the coordinate system given by ψ . Namely, $E(s,t) = \langle \frac{\partial \psi}{\partial s}, \frac{\partial \psi}{\partial s} \rangle$, $F(s,t) = \langle \frac{\partial \psi}{\partial s}, \frac{\partial \psi}{\partial t} \rangle$ and $G(s,t) = \langle \frac{\partial \psi}{\partial t}, \frac{\partial \psi}{\partial t} \rangle$. Show that

$$G(s,t)\equiv 1$$
 , $E(s,0)=1$, $F(s,0)=0$, $\frac{\partial E}{\partial t}(s,0)=0$, and $\frac{\partial F}{\partial t}(s,0)=0$.

- (c) (10%) Prove that $\frac{\partial^2 \sqrt{E}}{\partial t^2}(s,0)=-\mathbf{K}_{\gamma(s)}$, the Gaussian curvature of S at $\gamma(s)$.
- (4) (a) (15%) Let S be a closed surface in \mathbb{R}^3 . Prove that there exists a point $p \in S$ such that the Gaussian curvature of S at p is positive, $\mathbf{K}_p > 0$.
 - (b) (10%) Does there exist closed minimal surfaces in \mathbb{R}^3 ? Explain your answer.

試題隨卷繳回