國立暨南國際大學 101 學年度碩士班暨碩士在職專班入學考試試題

科目:數學 適用: 資工系

編號: 412

水次序作答・只要標明題號・不必抄題

尼必須寫在答案卷上,否則不予計分。

用藍、黑色筆作答;試題須隨卷繳回

単つ草

本 試 題

(以下各題均須寫出計算或證明過程方予計分)

1. For any given set in a tennis tournament, opponent A can beat opponent B in seven ways. (At 6-6 they play a tie breaker.) The first opponent to win three sets wins the tournament.

(a)(5%) In how many ways can scores be recorded with A winning in five

(b) (5%) In how many ways can scores be recorded with the tournament requiring at least four sets?

2. (10%) Let $A = \{a_1, a_2, a_3, a_4, a_5\} \subseteq \mathbb{Z}^+$. Prove that A contains a nonempty subset S where the sum of the elements in S is a multiple of 5. (Here it is possible to have a sum consisting of only one summand.

3. (10%) Let $A \subseteq \{1, 2, 3, ..., 50\}$ where A = 10. For any subset B of A let s_B denote the sum of the elements in B. Prove that there are distinct subsets C, D of A such that |C| = |D| = 4 and $s_C = s_D$.

4. (10%) For $n \ge 1$, let a_n be the number of ways to write n as an ordered sum of positive integers, where each summand is at least 2. (For example, $a_5 = 3$ because here we may represent 5 by 5, by $\frac{1}{2} + \frac{3}{2}$, by 3 + 2.) Find and solve a recurrence relation for a_n .

5. Let G = (V, E) be a loop-free undirected graph. Define the relation \mathcal{R} on E as follows: If e_1 , $e_2 \in E$, then $e_1 \Re e_2$ if $e_1 = e_2$ or if e_1 and e_2 are edges of a cycle C in G.

(a)(7%) Verify that \mathcal{R} is an equivalence relation on E.

(b) (3%) Describe the partition of E induces by \mathcal{R} .

國立暨南國際大學 101 學年度碩士班暨碩士在職專班入學考試試題

科目:數學 適用:資工系

編號:412

考生注意:

1.依次序作答,只要標明題號,不必抄題 2.答案必須寫在答案卷上,否則不予計分

共之頁第之頁

本 試 題

6. (10%) Prove that if A is a singular $n \times n$ matrix, then the reduced row-echelon form of A has at least one row of zeros.

7. (10%) Let
$$A = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{4} & 1 & \frac{1}{5} \\ \frac{1}{6} & \frac{1}{7} & 1 \end{bmatrix}$$
. Describe what happens to the matrix A^k when k is allowed to increase indefinitely (that is, as $k \to \infty$).

- 8. (20%)
 - (a) (10%) Let the vector space P_2 have the inner product $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$. Apply the *Gram-Schmidt process* to transform the standard basis $S = \{1, x, x^2\}$ into an orthonormal basis. (P_1 : the set of all real polynomials of degree 2 or less)
 - (b) (5%) For a polynomial $2x+1 = P_2$, find the coordinate vector of the polynomial relative to the orthonormal basis obtained in (a).
 - (c) (5%) Find the length of polynomial 2x+1 directly from the result of (b).

9. (10%) Let
$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 be an orthogonal matrix. Suppose $\begin{bmatrix} y_0 \\ y_1 \end{bmatrix} = A \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$, where $\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ and $\begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$ are the coordinate vectors relative to the old orthonormal basis $\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$ and a new basis, respectively. Find the new basis.

