國立彰化師範大學104學年度碩士班招生考試試題
 系所：

1．Let $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ -1 & 0 & s-1 \\ 3 & s+1 & 3\end{array}\right]$ ．Find all real number s so that $\operatorname{rank}(A)=2$ ．

2．Prove that $1, \frac{1}{x-1}, \frac{1}{(x-1)^{2}}$ are linearly independent．

3．Suppose $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for a vector space V ．Let

$$
\mathbf{w}_{1}=\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{w}_{2}=\mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{w}_{3}=\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}
$$

Prove that $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is a basis for V ．

4．Let A be an 3×3 matrix having eigenvalues $1,-1$ ．Suppose $[1,2,-1]$ is an eigenvector corresponding to the eigenvalue 1 and $[1,0,1],[-1,1,1]$ are eigenvectors corresponding to the eigenvalue -1 ．Find a matrix P so that $P^{-1} A P$ is a diagonal matrix and then determine A ．

5．Let $P_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{0}, a_{1}, a_{2} \in R\right\}$ ，and let $T: P_{2} \rightarrow P_{2}$ be defined by $T(p(x))=p(1)+p^{\prime}(0) x+\left[p^{\prime}(0)+p^{\prime \prime}(0)\right] x^{2}$ ．
（i）Show that T is a linear transformation．
（ii）Determine whether T is invertible，and compute T^{-1} if it exists．
（iii）Determine whether T is diagonalizable．
6．Prove that similar matrices have the same trace and the same determinant．

7．Let be a linear operator on an inner product space V ，and let W be a T－invariant subspace of V ．Prove that：
（i）W^{\perp} is T^{*}－invariant．
（ii）If W is both T－and T^{*}－invariant，then $\left(T_{W}\right)^{*}=\left(T^{*}\right)_{W}$ ．

