國立彰化師範大學104學年度碩士班招生考試試題

系所: <u>數學系</u> 科目:<u>線性代數</u>

☆☆請在答案紙上作答☆☆

共1頁,第1頁

1. Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & s-1 \\ 3 & s+1 & 3 \end{bmatrix}$$
. Find all real number s so that $rank(A) = 2$. (10%)

2. Prove that 1,
$$\frac{1}{x-1}$$
, $\frac{1}{(x-1)^2}$ are linearly independent. (10%)

3. Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for a vector space V. Let

$$\mathbf{w}_1 = \mathbf{v}_1 - \mathbf{v}_2, \, \mathbf{w}_2 = \mathbf{v}_2 - \mathbf{v}_3, \, \mathbf{w}_3 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$$

Prove that $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is a basis for V. (15%)

- 4. Let A be an 3×3 matrix having eigenvalues 1, -1. Suppose [1,2,-1] is an eigenvector corresponding to the eigenvalue 1 and [1,0,1], [-1,1,1] are eigenvectors corresponding to the eigenvalue -1. Find a matrix P so that $P^{-1}AP$ is a diagonal matrix and then determine A. (15%)
- 5. Let $P_2 = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in R\}$, and let $T: P_2 \to P_2$ be defined by $T(p(x)) = p(1) + p'(0)x + [p'(0) + p''(0)]x^2.$ (20%)
 - (i) Show that *T* is a linear transformation.
 - (ii) Determine whether T is invertible, and compute T^{-1} if it exists.
 - (iii) Determine whether *T* is diagonalizable.
- 6. Prove that similar matrices have the same trace and the same determinant. (10%)
- 7. Let be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove that : (20%)
 - (i) W^{\perp} is T^* -invariant.
 - (ii) If W is both T- and T^* invariant, then $(T_w)^* = (T^*)_w$.