## 國立臺灣師範大學 104 學年度碩士班招生考試試題

科目:工程數學

適用系所:機電工程學系-光機電系統組

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. Find and graph the output response V<sub>0</sub>(t) to the input V<sub>i</sub>(t) shown in Fig. 2 for the following RC circuit shown in Fig. 1, where RC=1 ms(0.001 sec.) (18 分)



Fig. 1

Fig. 2

2. Find and graph the output response y(t) to the unit step input  $\mu(t)$  for the following differential equation. (18 %)

$$y''(t) + 8y'(t) + 100y(t) = 100u(t), \quad y(0) = 0, \ y'(0) = 0$$

3. Obtain the general solution for the following equation

$$y'' - y' = 5\sin(2t)$$
 (14  $\Re$ )

- 4. Is there any  $2 \times 2$  matrix,  $\mathbf{A}$ , with real entries such that  $\mathbf{A}^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ ? Give a detailed explanation. (10  $\Re$ )
- 5. Set up the system of equations for the mesh currents,  $i_1$  and  $i_2$ , in the network shown in Figure 1. (15 分)
  - (a) Express the system as a matrix equation, AX = B, in which  $X = \begin{bmatrix} i_1 & i_2 \end{bmatrix}^T$ .

## 國立臺灣師範大學 104 學年度碩士班招生考試試題

- (b) Show that the coefficient matrix A is nonsingular.
- (c) Use  $X = A^{-1}B$  to solve for the currents.



Figure 1. Network for Problem 2

6. The electric field  $\mathbb{E}$  generated by a point charge q at the origin can be obtained from Coulomb's law, or Coulomb's inverse-square law:

$$\mathbf{E} = kq\mathbf{r}/\|\mathbf{r}\|^3,$$

in which k is a constant and  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ . Determine the electric flux out of a sphere  $x^2 + y^2 + z^2 = 4$  due to a point charge  $q \cdot (15 \%)$ 

*Note:* The surface area of a sphere of radius a is  $4\pi a^2$ .

7. Consider two functions,  $f_1(x) = 1$  and  $f_2(x) = x$ , which are orthogonal with respect to the weight function w(x) = 1 on the interval  $\begin{bmatrix} -2 & 2 \end{bmatrix}$ . Find constants  $c_1$  and  $c_2$  such that the function  $f_3(x) = x + c_1 x^2 + c_2 x^3$  is orthogonal to both  $f_1(x)$  and  $f_2(x)$  on the same interval.  $(10 \ \%)$