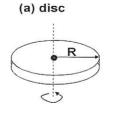
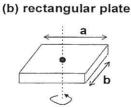

國立臺灣師範大學 104 學年度碩士班招生考試試題

科目:普通物理

適用系所:物理學系


注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

- 1. (a) Derive that the specific heat of constant volume " C_v " = 3R/2, and the specific heat of constant pressure " C_p " = 5R/2 for monatomic ideal gas. (Note: R is the ideal gas constant.) (10 points)
 - (b) Derive that in an adiabatic process, $P \cdot V^{\gamma} = \text{constant.} \quad \gamma \equiv {^C}_P/{_{C_v}}$ (5 points)
- 2. (a) Explain what is "Carnot's Cycle" or "Carnot's Engine". Plot the cycle in a P-V diagram. (10 points)
 - (b) If a Carnot's engine is operated between the hot temperature T_h and the cold temperature $T_c = T_h/2$. Calculate the efficiency of the Carnot's Engine = ? (5 points)
- 3. What is the height of the center of mass in a half spherical wood? (Note that the mass distribution is uniform and the radius equals "R". (10 points)



4. Derive the following rotational inertia for the objects (mass=M).

(10 points x 2)

I=(MR2)/2

 $I=M(b^2+a^2)/12$

國立臺灣師範大學 104 學年度碩士班招生考試試題

- 5. Propose a method to measure the carrier density in a piece of semiconductor. Explain the mechanism applied in this method. (Hint: you may apply an electric current and a magnetic field to the semiconductor.) (10 points)
- 6. There is a thick metallic spherical shell with the inner radius = \mathbf{R}_i and outer radius = \mathbf{R}_0 . The net charge of this shell is zero. There is a point charge $+\mathbf{Q}$ in the center of spherical shell.
 - (a) How is the charge distribution in the metallic shell? Calculate its surface or volume charge density. (5 points)
 - (b) Calculate and plot the electric field E(r) for $r=0 \sim \infty$. (Note: r is the distance to the center of this spherical shell.) (5 points)
 - (c) Calculate and plot the electrical potential $\Phi(\mathbf{r})$ for $\mathbf{r}=0\sim\infty$. (5 points)
- 7. (a) If a pendulum is suspended with a light string. The length of this string is L and the pendulum can be treated as a mass point. What is the length of L shall we choose in order to have the oscillation frequency = 1 /sec. (The gravitational acceleration $g = 10 \text{ m/s}^2$.) (5 points)
 - (b) When the light string and pendulum is replaced by a thin uniform rod, what is the length of L shall we choose in order to have the oscillation frequency = 1 / sec? (Note: The length of rod is L, and the mass is m. The gravitational acceleration $g = 10 \text{ m/s}^2$.) (10 points)