逢甲大學104學年度碩士班考試入學試題

※請務必在答案卷作答區內作答。

共 / 頁第 頁

- 1. Prove that n⁴ is not O(n²). (10%)
- 2. Solve the system of congruence $x \equiv 1 \pmod{2}$, $x \equiv 1 \pmod{3}$, and $x \equiv 3 \pmod{5}$. (15%)
- 3. Prove that $2n^2$ 20 is nonnegative whenever n is an integer with n >= 4. (10%)
- 4. How many solutions are there to distribute seven distinguishable fruits into four indistinguishable baskets so that each of the baskets contains at least one fruit? (15%)
- 5. Find these values. (10%)
 - (a) Find the values. $\left[\left[\frac{5}{2} \right] \bullet \left[\frac{15}{2} \right] + \frac{11}{10} \right]$
 - (b) Determine the truth values for the compound proposition $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \lor q)$.
- 6. Find these values. (12%)
 - (a) What is the coefficient of $x^{11}y^{17}$ in the expansion of $(-2x-3y)^{28}$?.
 - (b) Find the values of the extended binomial coefficients $\begin{pmatrix} -6 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 11/2 \\ 4 \end{pmatrix}$
 - (c) Find the general form of the solutions of the recurrence relation $a_k = 8a_{k-2} 16a_{k-4}$.
- 7. How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 21$ where x_i , i = 1,2,3,4,5 is a nonnegative integers such that
 - (a) $x_1 \ge 1$ (b) $x_i \ge 2$ (c) $0 \le x_1 \le 10$ (20%)
- 8. Prove that $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$. (8%)