國立高雄大學 104 學年度研究所碩士班招生考試試題

科目:離散數學與資料結構 系所:資訊工程學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:否

單選題 (每題2分,共3題)

- 1. A(n) _____ is a tree in which each internal node has either two or three children, and all leaves are at the same level.
 - a) red-black tree
 - b) 2-3 tree
 - c) 2-3-4 tree
 - d) AVL tree
- 2. In an array based representation of a complete binary tree, which of the following represents the left child of node tree[i]?
 - e) tree[i+2]
 - f) tree[i-2]
 - g) tree[2*i+1]
 - h) tree[2*i+2]
- 3. The minimum height of a binary tree of *n* nodes is _____.
 - i) *n*
 - j) n/2
 - k) (n/2)-2
 - 1) $\lceil \log_2(n+1) \rceil$

問答題

- 4. There are 9 students to be assigned into a number of unlabeled groups.
- (a) (5%) In how many ways can they be assigned into 3 groups and each group has 3 students?
- (b) (5%) In how many ways can they be assigned into 4 groups and each group has at most 3 students?
- 5. (a) (5%) Find a formula for $1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n \times (n+2)$, $n \in \mathbb{Z}^+$.
- (b) (5%) Use the Principle of Mathematical Induction to prove the formula in (a).
- 6. For all $n \in \mathbb{Z}^+$, show that

(a) (5%)
$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{n-i} (n-i)^{n} = n!$$

國立高雄大學 104 學年度研究所碩士班招生考試試題

科目:離散數學與資料結構 系所:資訊工程學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:否

(b) (5%)
$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{n-i} (n-i)^{n+1} = n! \times \binom{n+1}{2}$$

(Hint: Use the Stirling numbers of the second kind.)

- 7. There are 6 vertices in an undirected graph. We want to add edges to connect these 6 vertices such that no vertex is isolated.
- (a) (5%) In how many ways can 5 edges be added if each vertex is connected to at most 2 edges?
- (b) (5%) In how many ways can 5 edges be added?
- 8. Suppose we have a 1×8 chessboard as shown in the following.
- (a) (5%) In how many ways can we tile this 1×8 chessboard using 1×1 domino or 1×2 (horizontal) dominos?
- (b) (5%) In how many ways can we tile this 1×8 chessboard using green or red 1×1 domino, or black or white 1×2 (horizontal) dominos?

Chessboard:					1×1	domino:	1×2	domino:	
Chebbootia.					1/\1	domino.	 1/\2	domino.	l

- 9. (a) Derive a recursive formula for computing the binomial coefficient $\binom{n}{m}$, where $\binom{n}{0} = \binom{n}{n} = 1$. (5%)
 - (b) Write a recursive function to compute the binomial coefficient. (8%)
 - (c) Analyze the time requirement of your algorithm. (5%)
 - (d) Analyze the space requirement of your algorithm. (5%)
- 10. Assuming C precedence, write the postfix form for the following expressions:
- (a) A&&B||C||!(E>F) (2%)
- (b) !(A&&!((B<C)||(C>D)))||(C<E) (3%)
- 11. Write a function *length* to count the number of nodes in a chain. What is the time complexity of your function. (5%)
- 12. Given a non-directed graph below, in which each number on the edges represents the edge cost, and each number in the circles represents the vertex index.

國立高雄大學 104 學年度研究所碩士班招生考試試題

科目:離散數學與資料結構 系所:資訊工程學系 考試時間:100分鐘 本科原始成績:100分 是否使用計算機:否

- (a) Show how to use Kruskal's method to generate the minimum cost spanning tree. Show the running steps clearly. (4%)
- (b) What is the corresponding minimum cost? (1%)
- 13. Input a sequence of data in the order from left to right:

82, 16, 9, 95, 27, 75, 42, 69, 34

Show how to construct the AVL tree step-by-step. (6%)