國立東華大學招生考試試題第一月,共2頁

		1							
招	生生	争 年	度	104	招	生	類	別	碩士班
系	所	班	別	應用數學系碩士班					
科	目	名	稱	線性代數					
注	意	事	項	本考科禁止使用掌上型計算;	機				

1. (10%) Discover whether

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

is invertible, and find A^{-1} if it exists.

2. (10%) Let

$$A = \left(\begin{array}{rrrr} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{array}\right).$$

Find a row-reduced echelon matrix R which is row-equivalent to A and an invertible 3×3 matrix P such that R = PA.

3. (10%) Discover whether

$$W = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 : a_1 - 2a_2 + 3a_3 - a_4 + 2a_5 = 0\}$$

is a subspace of \mathbb{R}^5 , and find its dimension if it is a subspace. Justify your answers.

4. (12%) If W_1 and W_2 are finite-dimensional subspaces of a vector space V (over \mathbb{R}), then prove that W_1+W_2 is finite-dimensional and

$$\dim(W_1)+\dim(W_2)=\dim(W_1\cap W_2)+\dim(W_1+W_2).$$

5. (8%) Let

$$\mathsf{W}_1 = \left\{ \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) : a,b,c \in \mathbb{R} \right\} \text{ and } \mathsf{W}_2 = \left\{ \left(\begin{array}{cc} 0 & d \\ -d & e \end{array} \right) : d,e \in \mathbb{R} \right\}$$

be subspaces of $M_{2\times 2}(\mathbb{R})$. Is $M_{2\times 2}(\mathbb{R})=W_1+W_2$? Justify your answer.

6. (10%) Let

$$A = \left(\begin{array}{rrrrr} 1 & 0 & -1 & 2 & 1 \\ -1 & 1 & 3 & -1 & 0 \\ -2 & 1 & 4 & -1 & 3 \\ 3 & -1 & -5 & 1 & -6 \end{array}\right).$$

Find a 5×5 matrix M with rank 2 such that AM = O, where O is the 4×5 zero matrix.

國立東華大學招生考試試題第2頁,共2頁

招	生	争 年	度	104	招	生	類	別	碩士班
系	所	班	別	應用數學系碩士班					e 90
科	目	名	稱	線性代數					
注	意	事	項	本考科禁止使用掌上型計算機					

7. (10%) Let T be the linear operator on \mathbb{R}^4 , defined by

$$T(a, b, c, d) = (a + 3b, 4a + 2b, c + d, 4c + d).$$

Determine whether T is diagonalizable and if it is, find an ordered basis β for \mathbb{R}^4 such that $[T]_{\beta}$ is a diagonal matrix.

- 8. (10%) Let V be an inner product space (over \mathbb{R}). Prove the Cauchy-Schwarz inequality.
- 9. (10%) Given the subspace $W = \{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0\}$ and x = (1, 1, 2), find the orthogonal projection of x on W.
- 10. (10%) Let V be a finite-dimensional inner product space (over \mathbb{R}), and let $g: V \to \mathbb{R}$ be a linear transformation. Prove that there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$, where $\langle x, y \rangle$ denotes the inner product of x and y.