國立聯合大學 104 學年度碩士班考試招生

科目: 電子學

第_1_頁共 3 頁

- 1. (20%) Please indicate whether each of the following statements is always true or sometimes false. Justify your answer by giving a logical argument, otherwise the score will not be counted. (4 points for each)
- (a) A NMOSFET is said to have entered the triode region operation if $v_{GS} \ge V_t$ and $v_{DS} \le v_{GS} V_t$.
- (b) An ideal current amplifier is usually considered to have infinite input impedance and zero output impedance.
- (c)Since BJT is a nonlinear device, the superposition theorem can not be applied in its analysis. Therefore performing the DC and AC analyses separately of a BJT amplifier is not reasonable.
- (d)A negative feedback amplifier can reduce the closed-loop gain but increase the gain sensitivity.
- (e)A resistance $r_o = \frac{V_A}{I_D}$ between the Drain and the Source can model the Early effect of the MOSFET in the triode region.
- 2. (20%) Consider the following amplifier with $R_1 = 50k$, $R_2 = 10k$, $R_C = 1k$, $R_E = 0.4k$ $\beta = 100$ and $V_{CC} = 15V$, evaluate the following: (a) the DC operation point. (5%)
 - (b) the input and output resistances $R_i|_{R_s=0}$ and $R_o|_{R_L\to\infty}$ (5%)
 - (c) the voltage gain $A_{vo} = \frac{v_o}{v_i} |_{R_L \to \infty}$ (5%)
 - (d) the current gain $A_{is} = \frac{i_o}{l_i}\Big|_{R_L \to 0}$.(5%)

- 3. (25%) For the following single stage CS amplifier with $\frac{\mu_n C_{ox}W}{2L} = 2 \frac{mA}{V_U^2}$ and $V_m = 1, V_A = 100$, evaluate the following :
 - (a) The g_m parameter. (5%)
 - (b) The input and output resistances $R_i|_{R_s=0}$ and $R_o|_{R_L\to\infty}$.(5%)
 - (c) The midband voltage gain $A_m = v_o / v_s \begin{vmatrix} R_s = 1k \\ R_L = 2k \end{vmatrix}$.(5%)
 - (d) The corner frequency ω_{C1} , ω_{C2} and ω_{CS} . with $C_1 = 10 \, \mu F$, $C_2 = 20 \, \mu F$ and $C_S = 10 \, \mu F$ (5%)
 - (e) Sketch the Bode diagram $\left| \frac{v_o}{v_i} \right|$.(5%)

- 4. (15%) Consider the following Op-Amp difference amplifier.
 - (a) Find the differential input resistance. (5%)
 - (b) Find $v_o = f(v_1, v_2, v_3)$ (10%)

5. (20%) Consider the following OPA & MOSFET feedback amplifier, the transistor has a $g_m = 2mA/V$, $V_A = \infty$, the amplifier μ has an input resistance R_{id} , an output resistance R_{o1} , and open-circuit gain μ with the following circuit elements: $R_1 = 1K$, $R_2 = 10K$, $R_s = 0.5k$ Using the feedback method to

- (a) find the feedback network parameters β .(5%)
- (b) find the closed-loop gain A_f, (5%)
- (c) find the input resistance R_{if} , and R_{in} . (5%)
- (d) find the output resistance R_{of} and R_{out} . (5%)

