第3節

第 / 頁,共 / 頁

- 1. One mole of an ideal gas undergoes a free adiabatic expansion from V = 1 liter at 25 °C to V = 6 liters. Calculate ΔE , ΔH , ΔS , Q and ΔG . (10 %)
- 2. A cold engine operating at 25 $^{\circ}$ C is employed to maintain a cold storage at -20 $^{\circ}$ C. What is the minimum amount of work needed to withdraw 500 Joules of heat from the storage? (10 %)
- 3. $C_P C_V = T \cdot (\frac{\partial P}{\partial T})_V \cdot (\frac{\partial V}{\partial T})_P$, prove $C_P C_V = R$ for ideal gas. (10 %)
- 4. The enthalpy change for the reaction, Sn (grey) \rightarrow Sn (white), is 0.7 kcal at 25 °C. The entropy change is 1.8 cal/deg. Assuming ΔH^0 and ΔS^0 to be independent of temperature, calculate the temperature at which grey and white Sn coexist in equilibrium. (10 %)
- 5. One mole of $CH_{4(g)}$ and one mole of $CO_{2(g)}$ are mixed and allowed to react at 1000 K and 1 atm pressure to form $H_2(g)$ and CO(g). Determine the number of moles of each gas. Given that the standard free energy of the reaction at 1000 K, $\Delta G^{\circ} = -2 \times 10^4$ J/mole for CH_4 . (10 %)
- 6. The standard reaction enthalpy for the hydrogenation of propene is -124 KJmol $^{-1}$. CH $_2$ =CHCH $_3$ (g) + H $_2$ (g) \rightarrow CH $_3$ CH $_2$ CH $_3$ (g)

 The standard reaction enthalpy for the combustion of propane is -2220 KJmol $^{-1}$. CH $_3$ CH $_2$ CH $_3$ (g) + 5 O $_2$ (g) \rightarrow 3 CO $_2$ (g) + 4 H $_2$ O (I)

 The standard reaction enthalpy for the combustion of hydrogen is -286 KJmol $^{-1}$. H $_2$ (g) + 1/2 O $_2$ (g) \rightarrow H $_2$ O (I)

 Calculate the standard enthalpy of combustion of propene. (10%)
- 7. Calculate the work done when 10 g of Cu reacts with hydrochloric acid in (a) a closed vessel of fixed volume (10%), (b) an open beaker at 25 °C (10%). (Cu + HCl \rightarrow CuCl₂ + H₂)
- 8. Please identify the definition of 1 cal (calories), 1 J (joule), and 1 eV (electronvolt). (20%)