國立中正大學104學年度碩士班招生考試試題

系所別:光機電整合工程研究所

第2節

第1頁,共2頁

科目:電子學

1. Consider the amplifier shown in Fig. P1, for which V_t = 1 V, $k_n'(W/L)$ = 600 μ A/V², V_{GS} = 3 V, V_{DD} = 5 V, and R_D = 2 k Ω .

- (a) Find the dc quantities I_D and V_D .
- (6%)
- (b) Calculate the value of g_m at the bias point. (4%)
- (c) Calculate the value of the voltage gain.
- (5%)
- (d) If the MOSFET has $\lambda = 0.01 \text{V}^{-1}$, find r_o at the bias point and calculate the voltage gain. (5%)

- 2. For the NMOS amplifier shown in Fig. P2, assume the capacitances of C_{c1}, C_{c2}, and C_s are infinite.
 - (a) Specify the input resistance R_{in} and the output resistance R_{out} .

(8%)

(b) Draw the high-frequency equivalent circuit of the amplifier.

(4%)

(c) Considering the internal capacitances C_{gs} and C_{gd} , derive the high 3-dB frequency f_H using Miller's theorem. (8%)

- 3. A two-stage CMOS opamp shown in Fig. P3 is designed to provide a slew rate of 75 V/ μ s and a unity-gain bandwidth f_t of 80 MHz.
 - (a) Estimate the value of the overdrive voltage of the input-stage transistors.

(3%)

(b) If the first-stage bias current $I = 100 \mu A$, find the value of C_c .

(3%)

(c) For a process for which $u_p C_{ox} = 50 \mu A/V^2$, what W/L ratio applies for Q_1 and Q_2 ? (4%)

國立中正大學 104 學年度碩士班招生考試試題系所別:光機電整合工程研究所 科目:電子學

第 2 節

第上頁,共上頁

- 4. In each of the following statements, determine whether the statement is "True (T)" or "False (F)".
 - a) We can connect several diodes in series to construct a multiple input logic gate. (2%)
 - b) Body effect of MOSFET will always increase the threshold voltage. (2%)
 - c) A source follower is a good current buffer. (2%)
 - d) The gain of a common gate amplifier can be boosted by adding a source degeneration resistor. (2%)
 - e) The miller multiplication effect is observed in the common source amplifier, and reduces the bandwidth. (2%)
- 5. The feedback amplifier shown in Fig. P5 has two identical MOS transistors (Q_1 and Q_2) biased by ideal current sources (0.5 mA), where the overdrive voltage (V_{OV}), threshold voltage (V_{th}), and Early voltage (V_A) are 0.2 V, 0.5 V and 10 V for both Q_1 and Q_2 . Please evaluate the gain(A_f), input resistance (R_{if}) and output resistance (R_{of}) of this feedback amplifier. (20%)

- 6. We first design a basic matched CMOS inverter with W/L ratio of 1 μ m/0.18 μ m and 3 μ m /0.18 μ m for NMOS and PMOS, respectively. Assume the input and output parasitic capacitances of the basic matched inverter are both 4fF. Then a six input CMOS OR gate is realized in Fig. P6.
 - (a) Please sketch the circuit diagram of Fig. P6. (8%)
 - (b) If the transistors in (a) are sized to provide each gate with a current-driving capability equal to that of the basic matched inverter, please give the relative area of this six input OR gate and the basic matched inverter. (5%)
 - (c) In case the six input OR gate is powered by 1.8 V, and has signal switching frequency of 50 MHz, and 10 MHz at nodes $N_1(N_2)$ and Y. Please estimate the power dissipation. (7%)

