然所別 訊工 洲 信號與媒體通訊組 訊甲 組

科目:通訊原理

第1節

- 單選題(共30分):每題有五個選項,選擇一個最適當的答案,每題答對得5分;未作答 答錯或答多於一個選項者,該題以0分計算。
- 1. Which of the following statements is false?
- (a) Random signals are signals that take on random values at any given time instant and must be modeled probabilistically.
- (b) The unit impulse function $\delta(t)$ is defined in terms of the integral

$$x(t)\delta(t)dt = x(0)$$

where x(t) is any test function that is continuous at t = 0.

- (C) The unit step function u(t) is defined to be the integral of the unit impulse function.
- **a** The continuous-time Fourier transform of a real even signal is complex and even.
- (e) The continuous-time Fourier series representation of a signal is unique.
- 2. statements is false? $x_1(t)$, and $x_2(t)$ are signals with their Fourier transforms X(f), $X_1(f)$, and $X_2(f)$, Let the notation $x(t) \leftrightarrow X(f)$ be a continuous-time Fourier transform pair; therefore, x(t), respectively. Additionally, a, a_1, a_2, t_0 , and f_0 are constants. Which of the following
- (a) $a_1x_1(t) + a_2x_2(t) \leftrightarrow a_1X_1(f) + a_2X_2(f)$.
- (b) $x(t-t_0) \leftrightarrow X(f)e^{j2\pi ft_0}$.
- (c) $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{f}{a}\right)$.
- (d) $X(t) \leftrightarrow x(-f)$.
- (e) $x(t)e^{j2\pi f_0 t} \leftrightarrow X(f-f_0)$.
- 3. Which of the following statements is false?
- (a) DSB is 100% power efficient.
- 9 Demodulation utilizing a coherent reference is known as synchronous or coherent demodulation.
- © Amplitude modulations results when a DC bias is added to the message signal m(t) prior to the modulation process.
- (b) A lower-sideband SSB signal can be generated by passing a DSB signal through an ideal filter that passes the LSB and rejects the USB
- (e) signal by a periodic signal and is referred to as mixing. The process of frequency translation can be accomplished by summation of a bandpass

科目:通訊原理

第1節

Suppose that wide-sense stationary Gaussian random process X(t) has mean function 0 and autocorrelation function $R_{\chi}\left(au
ight)=\cos\left(rac{ au}{T_{0}}
ight)$, where T_{0} is a constant. Which of the following

statements is false?

- (a) The process X(t) is not necessarily strictly sense stationary.
- (b) At a particular time instant t_0 , $X(t_0)$ is a random variable with probability density

function
$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$
.

- (c) The process X(t) is a colored process
- (d) At two particular time instants t_0 and $t_0 + T_0$, the two random variables $X(t_0)$ and $X(t_0 + 2\pi T_0)$ are jointly Gaussian with correlation coefficient 1.
- (e) Input X(t) to a filter with impulse response $h(t) = \delta(t) - \delta(t - T_0)$ produces a Gaussian
- S Let $\{\phi_1(t), \phi_2(t), \phi_3(t)\}$ be a set of orthonormal signals over the interval $[0, T_s]$. Suppose we channel. If the logic 0 is represented by $x(t) = \frac{1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$, which of the following signals is the best candidate for logic 1? want to design a system to transmit a binary information over an additive white Gaussian noise

(a)
$$-\frac{1}{\sqrt{3}}\phi_1(t) + \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$
.

(b)
$$\frac{-1}{\sqrt{3}}\phi_1(t) + \frac{1}{\sqrt{3}}\phi_2(t) + \frac{1}{\sqrt{3}}\phi_3(t)$$

(c)
$$\frac{-1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$

(d)
$$\frac{1}{\sqrt{3}}\phi_1(t) + \frac{1}{\sqrt{3}}\phi_2(t) - \frac{1}{\sqrt{3}}\phi_3(t)$$

(e)
$$\frac{1}{\sqrt{3}}\phi_1(t) - \frac{1}{\sqrt{3}}\phi_2(t) + \frac{1}{\sqrt{3}}\phi_3(t)$$

可

第1節

6. Consider a set of binary codewords $c_1 = [1, 1, 1, 1]$, $c_2 = [1, -1, 1, 1]$ $c_3 = [1, -1, -1, -1]$

maximum likelihood detector determines the received codeword to be are of zero mean and variance σ^2 . Suppose that $\mathbf{r} = [0.2, 0.3, -0.1, -0.2]$ is received, the $\mathbf{c}_4 = [1, 1, -1, -1]$, and $\mathbf{c}_5 = [1, -1, -1, 1]$. Assume that the received signal is $\mathbf{r} = \alpha \mathbf{c}_m + \mathbf{w}$, where -0.4 is the known channel gain and w is the additive white Gaussian noise whose entries

- (a) \mathbf{c}_1
- (b) **c**₂
- (c) **c**₃
- (d) **c**₄
- (e) c₅

二、計算題(共40分):

- (10 分) Determine whether the following signals are energy signals or power signals. Note that A and $\alpha > 0$ are constants.
- (a) $x_1(t) = Ae^{-\alpha t}u(t)$.
- (b) $x_2(t) = Au(t)$.
- 2. (10 \hat{n}) Consider an FM system operating with the message signal $m(t) = A\cos(2\pi f_m t).$ Eind the factorization modulated signal $x_n(t)$

Find the frequency-modulated signal $x_c(t)$.

S. (10 $\widehat{\pi}$) Assume that A and f_0 are constants, and, random variable θ is uniformly distributed over [[0, 2π]. Is random process $X(t) = A\cos(2\pi f_0 t + \theta)$ ergodic?

条所別 通訊工程學 電機工程學 系-通訊甲組 条-信號與媒體通訊組

部

第4頁,共4頁

科目:通訊原理

4. passed through the following filter (10 \Re) A noisy random process $n_i(t)$ with autocorrelation function $R_{n_i}(\tau) = \frac{N_0}{2} \delta(\tau)$ is

What is the average power of the output process $n_o(t)$?

- 111 名詞解釋(共30分):請以下列兩名詞為標題,利用數學符號、數學式、圖、表格或其他 的名詞。 專業術語寫兩篇短文(每篇至多 500 字),從該名詞的定義、用途、特性等,分別解釋下列
- (15 分) Linear Modulation
 (15 分) Pulse shaping filter
- 2. $(15 \ \hat{x})$ Pulse shaping filter at the transmitter side