班招 平

電磁晶片組

計算機工程組 電力與電能處理甲

電能處理乙

組

百八

糸所別:電機工程學系

科目:線性代數與微分方程

第2節

- -(10%) Let \mathbb{R}^4 have the Euclidean inner product. Find two unit vectors that are orthogonal to all three of the vectors $\mathbf{u} = (1,1,-4,0)$, $\mathbf{v} = (-1,1,2,-2)$, $\mathbf{w} = (3, -2, 5, 4)$.
- 5 (10%) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, show that A is diagonalizable if $(a-d)^2 + 4bc > 0$.
- (5%) Let Bx = b be a linear system whose augmented matrix (B|b) has reduced row echelon form

Find all solutions to the system.

- 4. $d_1 = (1, 1, 1, 1), d_2 = (1, 2, 3, 4), d_3 = (0, 1, 0, 1), d_4 = (1, 0, 1, 0), d_5 = (4, 3, 2, 1).$ a. (5%) Find the dimension of the space V spanned by the vectors d_1 , d_2 , d_3 , d_4 , and
- b. (5%) Find a subset of these five vectors that forms a basis for the space V.
- c. (5 %) Express each vector di not in the basis (found in 4(b)) as a linear combination of the basis vectors.
- Two matrices M_1 (3 by 3) and M_2 (4 by 4) have the same determinant value.

$$M_{1} = \begin{bmatrix} 4 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 3 & 4 \end{bmatrix}, M_{2} = \begin{bmatrix} 0 & m & 0 & 0 \\ m & 0 & m & 0 \\ 0 & m & 0 & m \end{bmatrix}, M_{3} = \begin{bmatrix} 0 & m & 0 & 0 \\ 2m & 0 & 2m & 0 \\ 0 & 3m & 0 & 3m \\ 0 & 0 & 4m & 0 \end{bmatrix}$$

a. (5%) Find the value of m.

b. (5 %) Find the determinant of the matrix M_3 (4 by 4).

與 H 殞 莊 哲 罪 罪 題

電磁晶片組

電機工程學系- 計算機工程組

条所别:

電力與電能處理甲組 電力與電能處理乙組

組

部

寅

共と頁

甲科

: 線性代數與微分方程

第2節

Show all your work and write your answers clearly.

1. (10%) Solve the initial-value problem

$$(2e^{2x}\sin y + 2xy)dx + (e^{2x}\cos y + x^2)dy = 0$$

2. (10%) Given that $y_1 = x$ is a solution of the differential equation

$$x^2y'' - 4xy' + 4y = 0$$

find a second linearly independent solution by the method of reduction of order in the interval x > 0.

3. (10%) Find a general solution of the system

$$\mathbf{x}' = \begin{pmatrix} 9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3 \end{pmatrix} \mathbf{x}$$

4. (10%) Solve the initial-value problem

$$y^{(4)} + 2y'' + y = 4te^t$$
, $y(0) = y'(0) = y''(0) = y'''(0) = 0$

5. (10%) Find the eigenvalues and associated eigenfunctions of the Sturm-Liouville problem

$$y'' + \lambda y = 0$$
 $(0 < x < L);$
 $y(0) = 0,$ $hy(L) + y'(L) = 0$ $(h > 0)$