國立中山大學 104 學年度碩士暨碩士專班招生考試試題

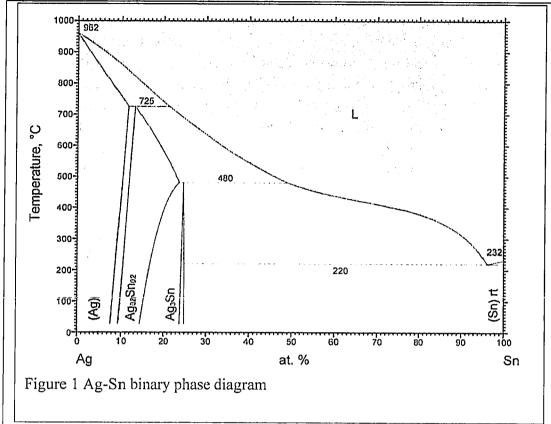
科目名稱:熱力學【材光系碩士班乙組】

題號:439006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第1頁

- 1. (25%) (a) For an ideal gas mixture composed by Gas A and Gas B, the mole fraction (x_A) and volume fraction (y_A) are equivalent. One blends 0.3m³ of Gas A and 0.7m³ of Gas B to form an ideal gas mixture at same conditions and there is no interaction between A and B. Please calculate the values of enthalpy of mixing, entropy of mixing and Gibbs free energy of mixing, respectively. (10%) (b) Now the Gas A and Gas B are mixed through a steady state flow process: 1mole/s of Gas A at 600K and 1 atm is continuously mixed with 2 mole/s of Gas B at 450K and 1 atm. The temperature of product stream is of 400K and the pressure remains as 1 atm. Please determine the rate of heat transfer and rate of entropy generation of the process.(15%) Assume that Gas A, Gas B and the mixture are ideal gas with C_p=3.5R, the temperature of surrounding is maintained at 300K, and the kinetic and potential energy changes are negligible.
- 2. (25%) One mole of ideal gas with constant heat capacities (ie., independent of temperature) undergoes a change of state from state A (P_A=l bar and V_B=12 m³) to state B (P_B=12 bar and V_B=1 m³). (a) Please calculate the values of q and W, and the change in U and H if the process is a mechanically reversible isothermal compression. (8%) (b) Please calculate the values of q and W, and the change in U and H if the process is a mechanically reversible adiabatic compression followed by cooling at constant pressure. (8%) (c) Sketch the paths for process (a) and (b) on a single PV (Pressure-Volume) diagram. (4%) (d) If the processes (a) and (b) are now conducted irreversibly with 65% efficiency and with the same change of state, please determine the change in U and H for process (a) and (b).(5%) (Note: C_p=3.5R and C_v=2.5R, R=8.3146 m³PaK⁻¹mol⁻¹, 1 bar=10⁵ pa).
- 3. (30%) Figure 1 shows the Ag-Sn binary phase diagram.
 - (a) Please calculate the increase in entropy(S) when 50 grams of Ag are mixed with 5 grams of Sn to form a homogeneous binary alloy. The atomic weights of Ag and Sn are 107.9 (g/mol) and 118.7 (g/mol), respectively. (6%)
 - (b) Please write down the peritectic reactions at 725 °C (T_1) and 480 °C(T_2) and indicate the reactant(s) and product(s) for the peritectic reactions. (4%)
 - (c) Please write down the eutectic reaction at 220° C (T₃) and indicate the reactant(s) and products for the eutectic reactions. (2%)
 - (d) Sketch the free energies of mixing (ΔG^{mix}) for the liquid and phases as a function of composition at temperatures T_1, T_2 and T_3 .(9%)
 - (e) Sketch the activities of Ag and Sn as a function of composition at temperatures T_1, T_2 and T_3 . In each case give the standard state you have chosen. (9%)


國立中山大學 104 學年度碩士暨碩士專班招生考試試題

科目名稱:熱力學【材光系碩士班乙組】

題號:439006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第2頁

4. (20%) The incredible Hulk would like to go ice-skating outdoors during winter time; however, the ice begins to melt once he stands on the ice. Given that the temperature of ice is -0.5°C, please estimate the weight of Hulk (kg) by using the Newton's Second Law F=mg. (Note: the specific volume of water and ice at 0°C are 0.00100 m³/kg and 0.00109 m³/kg, the heat of fusion for ice is 333.5 kJ/kg, the contact area between Hulk and ice is 0.001 m², 1atm=1.01324×10⁵ (N/m²) and g=9.81 (m/s²)).