國立中山大學 104 學年度碩士暨碩士專班招生考試試題

5 科目名稱:物理化學【材光系碩士班甲組】

題號: 439005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共1頁第1頁

1. Prove the van-der Waals gas where
$$\left(\frac{\partial U}{\partial V}\right)_T = \frac{a}{Vm^2}$$
 (10%)

- 2. A polymer chain consists of 1000 segments, each 1 nm long. If the chains were ideally flexible, what would be the root-mean squared separation of the ends of the chain?
- 3. A gas obeys the van der Waals equation with $P_c = 20$ atm and $T_c = 400$ K. Calculate the value of the van der Waals constants of a and b for this gas.
- 4. When 3 mole of water undercooled to -5 °C freezes isothermally, what are the entropy change of the system and surroundings? Give the molar enthalpy of the melting of ice at 0 °C is 6025 J/mol, the molar heat capacities of ice and water are 37.3 and 75.3 J/mol.K, respectively. (20%)
- 5. On the basis of the following proposed mechanism, calculate the rate law of N_2O_5 for the decomposition $2N_2O_5(g) \rightarrow 4NO_2 + O_2(g)$, where the mechanism was summarized as follows:
 - (1) $N_2O_5 \leftrightarrow NO_2 + NO_3$ (forward k_1 , reverse k_1 ')

(2)
$$NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO(k_2)$$

(20%)

- (3) NO + N₂O₅ \rightarrow 3NO₂ (k_3)
- 6. Calculate the change in Gibbs energy when a spherical droplet of mercury (1 g) disperses into the diameter of 30 nm particles where density of mercury is 13.6×10³ kg.m⁻³ and the surface tension of (20%)mercury is 483×10⁻³ N.m⁻¹