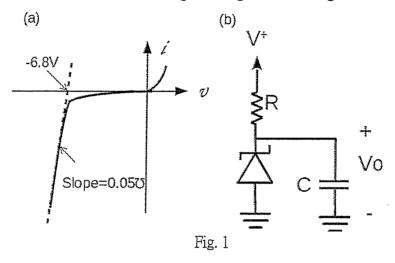
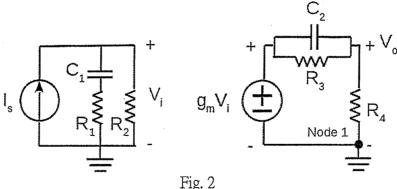
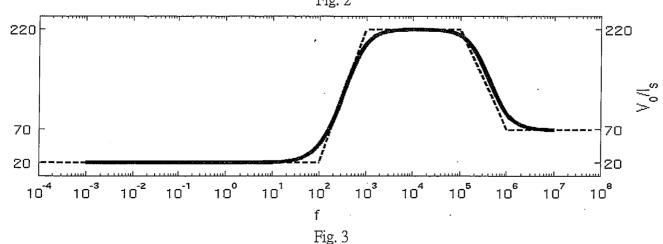
國立中山大學 104 學年度碩士暨碩士專班招生考試試題


科目名稱:電子學【光電所碩士班選考】

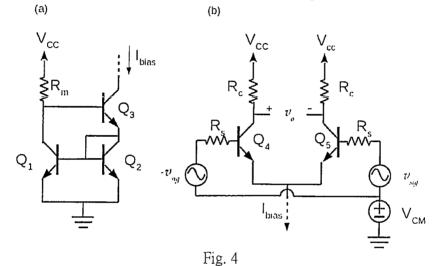
題號:435004


※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)


共2頁第1頁

- 1. A PN-junction operated reversed bias exhibit I-V characteristic as illustrated in Fig. 1 (a).
 - (1) Please state and explain possible mechanisms leading to such character. (10%).
 - (2) When operated at the breakdown region, a diode can be used as a rectifier shown in Fig. 1(b). Please plot its equivalent circuit (4%) and find the dc line regulation $\frac{\Delta V_0}{\Delta V}$ (4%).
 - (3) $V^+ = 10V$, $R = 10k\Omega$ and C = 100nf. When a small signal $v_s = 0.1sin(2\pi f_s t)$ is added upon V^+ , estimate the maximum frequency f_s achievable when the diode still works in breakdown region (4%) and estimate the associated phase angle between signal and output (4%).

2. An amplifier circuit is shown in Fig. 2 and its frequency response is given in Fig. 3. For $R_4 = 10k\Omega$, please find the values of R_1 , R_2 , R_3 , C_1 , C_2 and g_m (12%). If one insert a resistor $R_5 = 2.2k\Omega$ between node 1 and ground, what kind of feedback topology was utilized (3%)? What is the closed-loop gain $A_f \equiv \frac{V_0}{V_0}$ at zero frequency (3%)?



國立中山大學104學年度碩士暨碩士專班招生考試試題

科目名稱:電子學【光電所碩士班選考】

題號: 435004 ※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘) (問答申論題) 共2頁第2頁

- 3. A common-Emitter differential amplifier in Fig. 4(b) is biased by a current source built by circuit in Fig. 4(a).
 - (1) Assume the current gains in Q₁ and Q₂ and are β, and in Q₃ it is β'. Obtain the expression for I_{bias}. (5%)
 - (2) Assume the Early voltage of Q₃ is V_A, what is the output resistance of the current source in Fig. 4(a). (5%)
 - (3) Transistors Q₁,Q₂, Q₄ and Q₅ have identical current gain β and Q₅ has its current gain β'. The Early voltage for Q1, Q2, Q3 and Q5 is VA and Q4 has its early voltage (1+x)VA where x is much smaller than 1. Find the expression of common mode rejection ratio (CMRR) of the CE differential amplifier in Fig. 4(b). (10%) ** credits without detailed calculation procedure.

MOSFET characteristics: 4.

- (1) Plot the structure of n-type MOSFET. Indicate in your plot the depletion region at thermal equilibrium when drain and sources are grounded. (4%)
- (2) Explain the how depletion region is formed.(4%)
- (3) Explain the basic operations of n-type MOSFET (4%).
- (4) Explain body effect; how does it affect the device characteristics; plot the equivalent circuit model including the body effect (4%).
- (5) Explain channel length modulation and how it affect the MOSFET characteristics. (4%).
- (6) Two MOSFETs are fabricated on one substrate using the same technology. The dimension of the transistor are listed in table 1 and MOSFET are in operated in saturation region. Calculate the ratio of the following parameters: drain current (2%), channel conductance(2%), Early voltage (2%), output resistance (2%), gate-to-channel capacitance (2%) of the two transistor, i.e.

parameter of trnsistor 1

parameteroftransistor2

(7) Explain the operation of CMOS inverters and elucidate the effect if the two transistors are not matched. (6%)

Transistor	Oxide thickness	Channel length	Channel width
#1	4 nm	0.4µm	2μm
#2	6 nm	0.8µm	8µm

Table 1