國立中山大學 104 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第1頁

Problem 1 (25%)

Consider the differential equation: $\dot{x}(t) = ax(t) + u(t)$, with initial condition $x(0) = x_0$.

- (a) (10%) Show that the solution of the equation is $x(t) = e^{at}x_0 + \int_0^t e^{a(t-\tau)}u(\tau)d\tau$, $t \ge 0$.
- (b) (10%) Suppose a < 0. Show that for any bounded u and any initial condition x_0 , the corresponding solution x is bounded.
- (c) (5%) Suppose a > 0 and $u(t) = \sin(t)$. Find the initial condition x_0 such that the corresponding solution x is bounded. In this case, what is x?

Problem 2 (20%)

本問題係由兩個小題所組成,此兩小題共含有(a)~(f)六個子題;每個子題都只要寫出提問的答案即可(不須寫出答案背後的推導)。

- (5%) Consider the set $S := \{ A \in \mathbb{R}^{2 \times 2} \mid A = A^T \text{ and } tr(A) = k \}.$
- (a) What are all possible values of k so that S is a subspace of $V := \{A \in \mathbb{R}^{2\times 2} \mid A = A^T\}$? (2%)
- (b) Consider the inner product space $(S, \langle \bullet, \bullet \rangle)$ with $\langle A, B \rangle := tr(A^T B)$ for A and B in S. Find an orthogonal basis for S. (3%)
- (15%) Let $\alpha \neq 0$ and $A \in \mathbb{R}^{n \times n}$, and let $\Lambda(A)$ denote the set of all eigenvalues of A.
- (c) What is the condition on $\Lambda(A)$ so that $I + \alpha A$ is nonsingular? (2%)
- (d) Suppose $I + \alpha A$ is nonsingular, thus, for any nonzero scalar α , $\Omega_{\alpha} := (I \alpha^{-1}A)(I + \alpha A)^{-1}$ is a well-defined $\mathbb{R}^{n \times n}$ matrix. Then we know from knowledge of eigensystem of a square matrix that, corresponding to any $\lambda \in \Lambda(A)$, there is a $\mu \in \Lambda(\Omega_{\alpha})$. What is the mathematical relation between λ and μ ? (3%)
- (e) If Ω_1 , that is $(I-A)(I+A)^{-1}$, is an orthogonal matrix, then what mathematical relation between A and A^T can be derived? (5%)
- (f) If Ω_{α} is an idempotent matrix, then what are all possible values of det A? (5%)

Problem 3 (25%)

本問題共有(a)~(d)四個子題,除了(b)子題裡的 discuss 之外,每個子題都只要寫出提問的答案即可(不須寫出答案背後的推導)。

- (a) Describe the set of all $\mathbb{R}^{3\times 1}$ vectors $[\alpha \ \beta \ \gamma]^T$ that satisfy the two conditions
- $[\alpha \ \beta \ \gamma]^T \in N([1-2-1])$ and $[\alpha \ \beta \ \gamma]^T \notin (R([1\ 0-1]^T))^{\perp}$, where $N(\bullet)$ and $R(\bullet)$ indicate the null space and the range of a matrix, respectively. (5%)
- (b) Now denote the set
- $S := \left\{ P = \begin{bmatrix} \alpha & \beta \\ 0 & \gamma \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| \begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix}^T \in \mathcal{N}([1 \ -2 \ -1]) \ but \ [\alpha & \beta & \gamma \end{bmatrix}^T \notin \left(\mathcal{R}([1 \ 0 \ -1]^T) \right)^{\perp} \right\} \text{ in terms of solution}$
- of (a). Write out the set S and discuss if the closure property of vector addition holds for set S, i.e. whether the implication " P_1 , $P_2 \in S \Rightarrow P_1 + P_2 \in S$ " holds for any P_1 and P_2 . (1+5%)
- (c) Consider the inner product space $V = (\mathbb{R}^{2\times 2}, \langle \bullet, \bullet \rangle)$, where $\langle A, B \rangle := tr(A^T B)$ for A and B in $\mathbb{R}^{2\times 2}$. Describe S^{\perp} as the span of a set of orthonormal vectors in $\mathbb{R}^{2\times 2}$. (7%)
- (d) Now let $T := Span \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ be a subspace of V and let P be any vector of S. What is the distance of P to T? (7%)

國立中山大學 104 學年度碩士暨碩士專班招生考試試題

科目名稱:工程數學乙【電機系碩士班乙組】

題號:431001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第2頁

Problem 4 (15%)

Let C be a circle |z|=2 described in the counterclockwise direction.

(a)(5%) Compute the following integral

$$\oint_C \frac{e^{kz^n}}{z} dz, \quad n \text{ is a positive integer}$$

(b)(10%) Suppose the answer you obtained in Part (a) is $jn\pi$. Use Part (a) to evaluate

$$\int_0^{2\pi} e^{2k\cos(n\theta)} \sin(2k\sin(n\theta)) d\theta.$$

Problem 5 (15%)

Define the Fourier transform of a signal f(t) as $F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$, and its inverse Fourier transform is $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)e^{j\omega t}d\omega$. It is already known that the Fourier transform of signal $x(t) = \sin(at)/(\pi t)$ is

$$X(j\omega) = \begin{cases} 1, & |\omega| < \alpha \\ 0, & |\omega| > \alpha \end{cases}$$

and $\mathcal{F}\{tf(t)\}=j\frac{d}{d\omega}F(j\omega)$. Compute the Fourier transform of the signal

$$x(t) = t \left(\frac{\sin(t)\sin(t/2)}{\pi t^2} \right).$$