國立中山大學 104 學年度碩士暨碩士專班招生考試試題

科目名稱:電子學【電機系碩士班甲組、乙組、戊組、電波領域聯合】

題號: 431006

· ※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘) (問答申論題) 共2

共2頁第1頁

1. (15%) Figure 1 shows the inverting configuration voltage amplifier with $R = 1 \text{ k}\Omega$. (a) Please find the close loop gain of V_O/V_I if the operational amplifier (op amp) is ideal. (b) Please find the close loop gain of V_O/V_I if the open loop gain of op amp is 10 V/V. (c) If the op amp is a low-pass STC with

of
$$V_O/V_I$$
 if the open loop gain of op amp is 10 V/V. (c) If the op amp is a low-pass STC with $A(f) = \frac{10}{1 + \frac{j2\pi f}{1000}}$, please find the high frequency close loop gain of V_O/V_I at $f = 1$ GHz. (5%, 5%, 5%)

- 2. (25%) Consider the voltage amplifier of Figure 2 with a BJT device having β =100 when it is biased in the active region, the AC signal voltage V_{sig} , signal resistance R_{sig} = $10k\Omega$ and coupling capacitors C_{C1} and C_{C2} which can block DC component and pass AC component. The voltage supplies V_{CC} = 10V and the thermal voltage V_T = 25mV. The constant voltage drop 0.7V approximation can be used for the turnon of a p-n junction, and the constant voltage drop $V_{CE} \sim 0.2V$ approximation can be used when the BJT is biased in the saturation region. In addition, other resistances are also included, such like R_1 = $2M\Omega$, R_2 = $2M\Omega$, R_E = $5k\Omega$, R_C = $5k\Omega$, R_L = $5k\Omega$. Please come out following parameters: (a) transconductance g_m , (b) input resistance R_{in} , (c) overall AC voltage gain V_0/V_{sig} . (d) Please describe the advantages of the existing of emitter resistance R_E compared with no R_E . (5%, 5%, 5%, 10%)
- 3. (30%) Figure 3 is the two-stage CMOS op amp configuration. All NMOSFETs have the same W/L = $10\mu\text{m}/0.5\mu\text{m}$, $V_{tn} = 0.5\text{V}$, $\mu_n C_{ox} = 200~\mu\text{A}/\text{V}^2$. All PMOSFETs have the same W/L = $40\mu\text{m}/0.5\mu\text{m}$, $V_{tp} = -0.5\text{V}$, $\mu_p C_{ox} = 50~\mu\text{A}/\text{V}^2$. $|V_A|$ (for all devices) = 10V, $V_{DD} = V_{SS} = 3\text{V}$, $I_{REF} = 100\mu\text{A}$. Neglect the effect of V_A on bias current. Please find (a) the transconductance g_m and r_o of Q_2 , (b) the voltage gain of the first stage A_1 and the second stage A_2 , (c) the input common-mode range, and (d) the output voltage range. (10%, 10%, 5%, 5%)
- 4. (30%) Figure 4 shows a CC-CE amplifier with $R_{\text{sig}} = R_L = 5 \text{ k}\Omega$, $I_1 = I_2 = 1 \text{mA}$, and identical transistors with $\beta = 100$, $f_T = 500 \text{ MHz}$, $C_{\mu} = 5 \text{pF}$, and $C_C = 2 \mu \text{F}$. The thermal voltage $V_T = 25 \text{mV}$. For simplicity, neglect r_0 and r_x effect. Please find (a) the input resistance R_{in} , (b) the midband gain A_M , (c) the C_{π} of the BJTs, and (d) 3-dB frequency of the upper end of the midband, f_H (using open-circuit time-constants method). (5%, 5%, 5%, 15%)

國立中山大學 104 學年度碩士暨碩士專班招生考試試題

科目名稱:電子學【電機系碩士班甲組、乙組、戊組、電波領域聯合】

題號: 431006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁 $+V_{\mathrm{DD}}$ Q_6 $o v_o$ V_{CM} - $v_{id}/2$ $V_{CM} + v_{id}/2$ I_{REF} Q_4 Q_3 $-V_{SS}$ Figure 3. V_{CC} V_{CC} R_{in} I_2 ($\mathsf{R}_{\mathsf{sig}}$ C_{C} Q_1 <u>٧</u> **٥** V_{sig} ≥ R_L Q_2 I_1 Figure 4.