1．Explain what are round－off error and truncation error in numerical methods． （10\％）

2．The function is given as $f(x)$ ，use Taylor series expansion to relate $f(x+\Delta x)$ and $f(x)$ ．（ 10% ）．

Derive the relation：$\frac{d f(x)}{d x}=\frac{1}{2 \Delta x}[3 f(x)-4 f(x-\Delta x)+f(x-2 \Delta x)] \quad(10 \%)$

3．Matrix A can be decomposed to be the product $A=L U$ ，where L is a lower triangular matrix and U is a upper triangular matrix，respectively．Given the matrix $A=\left(\begin{array}{ll}2 & 4 \\ 4 & 9\end{array}\right)$ ，compute $\mathrm{L}=$ ？and $\mathrm{U}=?(20 \%)$

4．Use any curve fitting method to determine a polynomial $p(x)$ of degree 2 such that $p(-1)=13, p(0)=1$ ，and $p(1)=-1 .(10 \%)$ ．Determine numerically the integral $\int_{-1}^{1} p(x) d x=?$ and $\frac{d^{2} p(0)}{d x^{2}}=$ ？（ 10% ）．

5．Given a nonlinear equation $f(x)=0$ ，describe any method you know to find the roots of the equation．（10\％），

6．The Gaussian quadrature gives the following formula

$$
\int_{-1}^{1} f(x) d x=C_{0} f\left(x_{0}\right)+C_{1} f\left(x_{1}\right)
$$

Describe how to determine the corresponding coefficients．（20\％）

