編號: 83 國立成功大學 104 學年度碩士班招生考試試題											
系所組別:化學工程學系乙組											
考試	考試科目:無機化學及分析化學考試日期:0211,節次:2										
第1頁,共2頁											
※考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。											
Inorganic Chemistry (50 points)											
(1)	(1) Choose the stronger acid or base in the following pairs and explain your choice:										
	a. Pyridine or 2-methylpyridine in reaction with trimethylboron (5 points)										
	b. Triphenylboron or trimethylboron in reaction with ammonia (5 points)										
(2)	(2) On the basis of VSEPR, predict the structures of $XeOF_2$, $XeOF_4$, XeO_2F_2 , and XeO_3F_2 . (8 points)										
(3)	(3) Explain the order of the magnitudes of the following Δ_0 values for Cr(III) complexes in terms of the σ										
	and π donor and acceptor properties of the ligands. (12 points)										
	Ligand $F^ Cl^ H_2O$ NH_3 ethylenediamine CN^-									CN ⁻	
	Δ_0 ((cm^{-1})	15,20	00 13	3,200	17,4	00	21,600		21,900	33,500
(4)	(4) Na[$(n^5-C_5H_5)$ Fe(CO) ₂] reacts with ClCH ₂ CH ₂ SCH ₂ to give A a monomeric and diamagnetic substance										
	of stoichior	netry C	$H_{10}H_{12}F_{10}$	eO ₂ S ha	aving t	wo stro	ong IR l	bands at 1	980	and 1940 cm ⁻¹ . H	eating of A gives B,
	a monomeric, diamagnetic substance having strong IR bands at 1920 and 1630 cm ^{-1} . Identify A and B.										
	(10 points)										
(5)	(5) Reduce the following representation for $CO_3^{2-}(D_{3h})$ to irreducible representations: (10 points)										
	D_{3h}	E	$2C_3$	$3C_2$	σ_{h}	$2S_3$	$3\sigma_v$				
	Г	12	0	2	4	_2	2	-			
	I.	12	U	2		2	2				
Character Table of D _{3h} :											
	D _{3h}	E	$2C_3$	$3C_2$	σ_{h}	$2S_3$	$3\sigma_v$				
	A ₁ '	1	1	1	1	1	1			x^2+y^2, z^2	

							and the second se	the second s
A ₁ '	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A ₂ '	1	1	1	1	1	1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)
Aı"	1	1	1	1	-1	-1		
A2"	1	1	1	-1	1	1	z	
Е"	2	1	0	2	1	0	(R_x, R_y)	(xy, yz)
	1						1	1

國立成功大學 104 學年度碩士班招生考試試題

系所組別:化學工程學系乙組 考試科目:無機化學及分析化學

考試日期:0211,節次:2

第2頁,共2頁

編號: 83

Analytical Chemistry (50 points)

- (6) Continued from (5), determined the IR and the Raman active modes (10 points)
- (7) The Ti content (wt%) of five different ore samples (each with a different Ti content) was measured by each of two methods. Do the two analytical techniques give results that are significantly different at 95% confidence level? (10 points)

Sample	Method 1	Method2		
А	0.0134	0.0135		
В	0.0144	0.0156		
С	0.0126	0.0137		
D	0.0125	0.0137		
Е	0.0137	0.0136		

(8) Calculate the quotient $[H_2PO_4^-]/[HPO_4^{2-}]$ in a phosphate solution at pH values of 6 and 12? (10 points) $pK_1 = 2.15$, $pK_2 = 7.20$, $pK_3 = 12.35$

(9) From the following reduction potentials,

 $I_2(s) + 2e^- \rightleftharpoons 2I^- \qquad E^0 = 0.535 V$ $I_2(aq) + 2e^- \rightleftharpoons 2I^- \qquad E^0 = 0.620 V$

 $I_3^- + 2e^- \rightleftharpoons 3I^- \qquad E^0 = 0.535 V$

(a) Calculate the equilibrium constant for $I_2(aq) + I^- \rightleftharpoons I_3^-$ (3 points)

(b) Calculate the equilibrium constant for $I_2(s) + I^- \rightleftharpoons I_3^-$ (3 points)

(c) Calculate the solubility (g/L) of $I_2(s)$ is water (4 points)

(10) Two compounds with partition coefficients of 15 and 18 are to be separated on a column with $V_m / V_s =$ 3.0 and $t_m = 1.0$ min. Calculate the number of theoretical plates needed to produce a resolution of 1.5. (10 points)