系所組別：化學工程學系乙組
考試科目：無機化學及分析化學
考試日期：0211，節次：2

第1頁，共2頁

※ 考生請注意：本試題可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

Inorganic Chemistry（50 points）

（1）Choose the stronger acid or base in the following pairs and explain your choice：
a．Pyridine or 2－methylpyridine in reaction with trimethylboron（5 points）
b．Triphenylboron or trimethylboron in reaction with ammonia（ 5 points）
（2）On the basis of VSEPR，predict the structures of $\mathrm{XeOF}_{2}, \mathrm{XeOF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ ，and $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ ．（8 points）
（3）Explain the order of the magnitudes of the following Δ_{0} values for Cr （III）complexes in terms of the σ and π donor and acceptor properties of the ligands．（ 12 points）

Ligand	F^{-}	Cl^{-}	$\mathrm{H}_{2} \underline{O}$	NH_{3}	ethylenediamine	CN^{-}
$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	15,200	13,200	17,400	21,600	21,900	33,500

（4） $\mathrm{Na}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]$ reacts with $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$ to give \mathbf{A} ，a monomeric and diamagnetic substance of stoichiometry $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FeO}_{2} \mathrm{~S}$ having two strong IR bands at 1980 and $1940 \mathrm{~cm}^{-1}$ ．Heating of \mathbf{A} gives \mathbf{B} ， a monomeric，diamagnetic substance having strong IR bands at 1920 and $1630 \mathrm{~cm}^{-1}$ ．Identify \mathbf{A} and \mathbf{B} ． （10 points）
（5）Reduce the following representation for $\mathrm{CO}_{3}{ }^{2-}\left(\mathrm{D}_{3 \mathrm{~h}}\right)$ to irreducible representations：（10 points）

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{v}}$
Γ	12	0	-2	4	-2	2

Character Table of $\mathrm{D}_{3 \mathrm{~h}}$ ：

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{y}}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$x^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E,	2	-1	0	2	-1	0	(x, y)	$\left(x^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{\mathbf{l}}{ }^{\prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2} \prime$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xy}, \mathrm{yz})$

第 2 頁，共 2 頁

Analytical Chemistry（50 points）

（6）Continued from（5），determined the IR and the Raman active modes（10 points）
（7）The Ti content（ $\mathrm{wt} \%$ ）of five different ore samples（each with a different Ti content）was measured by each of two methods．Do the two analytical techniques give results that are significantly different at 95% confidence level？（10 points）

Sample	Method 1	Method2
A	0.0134	0.0135
B	0.0144	0.0156
C	0.0126	0.0137
D	0.0125	0.0137
E	0.0137	0.0136

（8）Calculate the quotient $\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right] /\left[\mathrm{HPO}_{4}{ }^{2-}\right]$ in a phosphate solution at pH values of 6 and 12 ？（ 10 points） $\mathrm{pK}_{1}=2.15, \mathrm{pK}_{2}=7.20, \mathrm{pK}_{3}=12.35$
（9）From the following reduction potentials，
$I_{2}(s)+2 e^{-} \rightleftharpoons 2 I^{-} \quad E^{0}=0.535 \mathrm{~V}$
$I_{2}(a q)+2 e^{-} \rightleftharpoons 2 I^{-} \quad E^{0}=0.620 \mathrm{~V}$
$I_{3}^{-}+2 e^{-} \rightleftharpoons 3 I^{-} \quad E^{0}=0.535 \mathrm{~V}$
（a）Calculate the equilibrium constant for $I_{2}(a q)+I^{-} \rightleftharpoons I_{3}^{-}$（3 points）
（b）Calculate the equilibrium constant for $I_{2}(s)+I^{-} \rightleftharpoons I_{3}^{-}$（3 points）
（c）Calculate the solubility $(\mathrm{g} / \mathrm{L})$ of $\mathrm{I}_{2}(\mathrm{~s})$ is water（4 points）
（10）Two compounds with partition coefficients of 15 and 18 are to be separated on a column with $\mathrm{V}_{\mathrm{m}} / \mathrm{V}_{\mathrm{s}}=$ 3.0 and $\mathrm{t}_{\mathrm{m}}=1.0 \mathrm{~min}$ ．Calculate the number of theoretical plates needed to produce a resolution of 1.5 ． （10 points）

