編號: 313	國立成功	大學 104 學年度碩	针班招生考試試題
系所組別:環境 醫 學研	听究所甲組		
考試科目:環境化學			考試日期:0212,節次:3
第1頁,共1頁			
※ 考生請注意:本註	、題不可使用計算	「機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
1. Give the chemical stu (1) Endosulfan	ructure and describ	be the usage of the follo	wing chemicals in the industry. (20%, 4% for each)
(2) Short chain chlorinated paraffins (SCCPs)			
(3) Bisphenol A			
(4) 3,3',4,4',5,5'-Hexa brominated biphenyls (PBBs)			
(5) Vinyl acetate			
 由於大量燃燒化石燃料而使得大氣中 CO2 濃度節節上升,大氣中 CO2 濃度與酸兩之形成有關,若在一大氣壓, 25℃下,大氣中 CO2 濃度上升至 400 ppm 時,若其溶於水中達平衡狀態下,請計算平衡時水中之 pH 值。(20%) mole 			
(1) 一大氣壓, 25	℃下, CO 2溶水之	亨利常數 H=3.4*10-2	$\left(\frac{mole}{L \times atm}\right)$
(2) $H_2CO_3 \Leftrightarrow H$	$I^+ + HCO_3^-$ K _{C1}	=2.33*10 ⁻⁸	
(3) $HCO_3 \Leftrightarrow H^2$	$+ CO_3^{2-}$ K _{C2}	=2.13*10 ⁻⁴	
 Balance the following Oxidation of I⁺ to Oxidation of S₂O Oxidation of NH₄ Oxidation of CH₃ Oxidation of C₆H 	equations: (20%, 4 I_2 and reduction of 3^2 to SO ₄ ²⁻ and reduction to NO ₃ ⁻ and reduction (COO ⁻ to CO ₂ and reduction) I_2O_6 to CO ₂ and reduction	1% for each) f MnO ₂ to Mn ²⁺ uction of C1 ₂ to C1 ⁻ ction of O ₂ to H ₂ O eduction of Cr ₂ O ₇ ⁻ to Cr ³⁺ fuction of NO ₃ ⁻ to N ₂	+
4. Please explain why the results of BOD and COD for the same sample are always different? (10%)			
5. Please describe the formation mechanism of primary and secondary PM _{2.5} ? (20%)			
6. Please explain the for	mation mechanism	n of "Crown corrosion" i	in the public sewage system ? (10%)