科目:普通化學(6523)

考試日期:104年2月7日 第 1 節

系所班別:加速器光源科技與應用碩士學位學程

第 頁,共5 頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

Potentially useful information (including periodic table, some formulae and constants):

PERIODIC TABLE OF THE ELEMENTS

	2A	3 #	4B	5 B	6B	78	\$B	88	88	18	28	3A	44	5A	6A	7A	<u> </u>
H																	k
1.008																	4.0
3	-											[*	•	7		7	11
ŭ	Be											В	C	N	0	F	N
1400	0.012										. :	10.81	12.01	14.01	15.00	19.00	20.
11	12											13	14	IS	16	17	H
Na	Mg											Al	Si	P	S	CI	٨
22,00	M.31											25.90	28.09	30.97	32.07	35.45	30.
19	*	2 E	22	23	24	25	26	27	28	29	38	31	32	23	34	25	<u> </u>
K	Ca	S¢	Ti	V	Cr	Ma	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	K
30.10	0.00	44.00	47.90	80,64	\$2.00	84,94	25.85	8	84.71	****	66.31	99,72	72.01	74.92		79.84	-
37	74	39	10	41	42	43	#	45	46	47	45	47	50	51	23	ស	15
Rb	Sr	Y	Zr	Nb	Mo	Te	Ku	Rh	Pd	Ag	Cd	lo	Sa.	Sb	Te	1	X
-	9.62	8 5.9 1	91.22		35.9 5		101,1		100.1	107,9	132.4	7144	118.7		127.4	_	_
*	**	57	72	13	¥.	75	76	77	78 Pt	72	#A Hg	*1 TI	A2 Pb	#3 Bi	Po	as At	R
C	Ви		Hſ.	ſ	**	Re	Ox	lr		Au			1				
132.0		Ī	78.0	181.0	100		190.7	100	110.1	197.0	PEVI II	40.1.	KU! 4	()	U.S.	(210)	[21
Fr	# Da	27	and Line	195	### Umb	107 1 inns			1								
(223)	Ra					,			l								

Formulae

- $t_{1/2} = (\ln 2/k), \ln 2 = 0.693$
- $v = \Re(1/n_1^2 1/n_2^2)$, $\Re = 3.29 \times 10^{15} \text{ Hz}$
- nFE = RTlnK
- $\Delta E^{\circ} = E^{\circ}(cathode) E^{\circ}(anode)$
- $\Delta E = \Delta E^{\circ} (0.05916/n) \log Q$

Constants

- $R = 8.314 J / (K \cdot mol)$
 - $= 8.206 \times 10^{-2} \text{ atm} \cdot \text{L} / (\text{K} \cdot \text{mol})$
- 1 atm = 760 Torr
 - $= 1.01 \times 10^5 Pa$
 - $= 0.0821 L atm / (K \cdot mol)$
 - $= 8.314 \text{ L kPa / (K \cdot mol)}$
- $e = 1.60 \times 10^{-19} \text{ C}$
- $c = 2.99 \times 10^8 \,\text{m/s}$
- $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$
- $\hbar = 1.05 \times 10^{-34} \text{ J} \cdot \text{s}$
- F = 96,500 Coulombs/mole

(Ouestion $1\sim16$: total 32%, 2% for each)

(單選題共16題,每題答對得2分,未作答或答錯不給分。請用答案卡作答。)

- 1. The lowest-frequency line in the Lyman series for H is 2.47×10^{15} Hz. What is the frequency of the radiation emitted by He⁺ from n = 2 to n = 1?
 - A) $4.94 \times 10^{15} \text{ Hz}$
 - B) $9.88 \times 10^{15} \text{ Hz}$
 - C) $2.67 \times 10^{16} \text{ Hz}$
 - D) $5.34 \times 10^{16} \text{ Hz}$
- 2. For dinitrogen monoxide, which of the following statements is not true?
 - A) The most stable arrangement of atoms is NON.
 - B) N=N=O and N=O=N are not resonance structures.
 - C) In the structure N=O=N, the formal charge on the central O atom is +2.
 - D) In the structure N≡N-O, the formal charge on the central N atom is +1.

科目:普通化學(6523)

考試日期:104年2月7日 第 1 節

系所班別:加速器光源科技與應用碩士學位學程

第2頁,共5頁

【可使用計算機】米作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

- 3. For a one-dimensional particle in a box, which of the following statements is not true?
 - A) The lowest possible energy > 0.
 - B) For n = 1, the wavelength is equal to the length of the box.
 - C) As the mass of the particle becomes heavier, the lowest possible energy decreases.
 - D) The probability of finding the particle in a region is proportional to the square of wavefunction (Ψ^2)
- 4. Hydrogen has a strong emission line at 6563 Å. What is the energy difference between the energy levels in hydrogen that are involved in this transition?
 - A) 0.16 eV
 - B) 1.89 eV
 - C) 3.03 eV
 - D) 4.57 eV
 - E) 15.2 eV
 - 5. Which of the following is not a valid resonance structure for N₃⁻?

(A)

N=N-N:

 $N-N\equiv N$

all are correct

- 6. Which of the following is not an assumption of the kinetic molecular theory for a gas?
 - A) Gases are made up of tiny particles in constant chaotic motion.
 - B) Gas particles are very small compared to the average distance between the particles.
 - C) Gas particles collide with the walls of their container in elastic collisions.
 - D) The average velocity of the gas particles is directly proportional to the absolute
 - E) All of the above are assumptions of the kinetic molecular theory.

科目:普通化學(6523)

考試日期:104年2月7日 第 1 節

系所班別:加速器光源科技與應用碩士學位學程

第分頁共万頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 7. Of the following sets of four quantum numbers $\{n, l, m_l, m_s\}$, identify the one that is allowed for an electron in an atom.
 - A) {2, 2, 0, +1/2}

 - B) {3, 1, -1, 0} C) {4, 0, 1, +1/2}
 - D) {4, 2, -2, -1/2}
- 8. Which of the following statements is true?
 - A) Fluorescence never occurs in gas phase.
 - B) Mechanical shock to a crystal may cause luminescence.
 - C) In fluorescence, the wavelength of the emitted light is always longer than the exciting light.
 - D) In phosphorescence, the excited state is a doublet state that has longer life-time than a singlet state.
 - E) Because of the short life-time of the excited state, an excited fluorescent molecule never transfers its energy and excites another fluorescent molecule.
- 9. A sample of O2 gas takes 400 s to effuse through a porous plug at 400 K. It takes 800 s for the same number of molecules of an unknown gas to effuse at 300 K. What is the molar mass of this unknown gas?
 - A) 48.0 g/mol
 - B) 55.5 g/mol
 - C) 72.0 g/mol
 - D) 96.0 g/mol
- 10. Molecular crystals are held in lattice sites by
 - A) covalent bonds.
 - B) ionic bonds.
 - C) intermolecular forces.
 - D) large molecular orbitals that span many lattice sites.
- 11. What is the molecular shape of white phosphorus P₄, and is this molecule polar or nonpolar?
 - A) linear, polar.
 - B) saw tooth, nonpolar
 - C) tetrahedron, nonpolar
 - D) square planer, nonpolar
 - E) trigonal pyramidal, polar

科目:普通化學(6523)

考試日期:104年2月7日 第 1 節

系所班別:加速器光源科技與應用碩士學位學程

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 12. Which of the following reaction is referred to the second ionization energy of calcium?

 - Which of the IOHOWALLAND A) $Ca_{(g)}^+ \to Ca_{(g)}^{2+} + e^-$ B) $Ca_{(aq)}^+ \to Ca_{(aq)}^{2+} + e^-$ C) $Ca_{(a)} \to Ca_{(g)}^{2+} + 2e^-$

 - B) $Ca_{(aq)}$ C) $Ca_{(g)} \rightarrow Ca_{(g)}^{2+} + 2e$ $\rightarrow Ca_{(aq)}^{2+} + 2e^{-}$ D) $Ca_{(s)} \rightarrow Ca_{(aq)}^{2+} + 2e^{-}$ E) $Ca_{(s)} \rightarrow Ca_{(g)}^{2+} + 2e^{-}$
- 13. The small, but important, energy differences between 3s, 3p, and 3d orbitals are due mainly to
 - A) the number of electrons they can hold
 - B) their principal quantum number
 - C) the Heisenberg uncertainty principle
 - D) the penetration effect
 - E) Hund's rule
- 14. Which of the following statements is true?
 - A) The exact location of an electron can be determined if we know its energy.
 - B) An electron in a 2s orbital can have the same n, l, and m_l quantum numbers as an electron in a 3s orbital.
 - C) Ni has two unpaired electrons in its 3d orbitals.
 - D) In the buildup of atoms, electrons occupy the 4f orbitals before the 6s orbitals.
 - E) Only three quantum numbers are needed to uniquely describe an electron.
- 15. Which of the following species has a trigonal bipyramid structure?
 - (A) NH_3 (B) IF_5 (C) I_3^- (D) PCl_5 (E) none of these
- 16. Consider an atom traveling at 1% of the speed of light. The de Broglie wavelength is found to be 4.15×10⁻³ pm. Which element is this?
 - (A) He
- (B) S
- (C) F
- (D) Cu
- (E) P
- 17. (10%) Explain how solar cells and artificial photosynthesis harvest solar energy?
- 18. (10%) In the titration of 100.0 ml of a 0.050 M H₃A solution ($K_{a1} = 1.0 \times 10^{-3}$, $K_{a2} = 5.0 \times 10^{-8}$, $K_{a3} = 2.0 \times 10^{-8}$ 10^{-12}), calculate the volume of 1.00 M NaOH required to reach pH= 9.50 and 4.00.

科目:普通化學(6523)

考試日期:104年2月7日 第 1 節

系所班別:加速器光源科技與應用碩士學位學程

万頁共 万頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 19. (13%) The concentration of CO in the air is 300 ppmv when the atomic pressure and temperature are 628 torr and 0 °C, respectively.
 - (a) Define pomy for gases. (3%)
 - (b) What is the partial pressure of CO? (5%)
 - (c) What is the concentration of CO in molecules per cubic centimeter? (5%)

 $(1 \text{ atm} = 760 \text{ torr} = 1.013 \times 10^5 \text{ Pa})$

- 20. (10%, 5% for each) Balance the following two equations occurring in acidic solution.

 - (a) $H_2S_{(g)} + NO_3^{-}_{(aq)} \longrightarrow S_{(s)} + NO_{(g)}$ (b) $Cl^{-}_{(aq)} + Cr_2O_7^{2-}_{(aq)} \longrightarrow Cr^{3+}_{(aq)} + Cl_{2(g)}$
- 21. (8%) Consider the two reduction half-reactions:

$$Cu^{2+}_{(aq)} + 2e^- \rightarrow Cu_{(s)}$$

$$E^{\circ} = +0.34 V$$

$$Zn^{2+}_{(aa)} + 2e^{-} \longrightarrow Zn_{(s)}$$

$$E^{\circ} = -0.76 V$$

- (a) Calculate the standard electrode potential E°_{cell} for zinc acting as the anode (oxidation) and copper acting ad cathode (reduction).
- (b) Calculate the ΔG° for the reaction, where $\Delta G^{\circ} = -nFE^{\circ}_{cell}$. $(F = 96500 \frac{\text{Coulombs}}{\text{mole}})$
- 22. (10%) Write the structural formulas for all isomers of C₆H₁₄ and name all these isomers.
- 23. (7%) Consider the following mechanism:

$$0_{3(g)} \rightarrow 0_{2(g)} + 0_{(g)}$$
 (fast)

$$O_{3(g)} + O_{(g)} \rightarrow 2O_{2(g)}$$
 (slow)

- (a) Write the overall balanced chemical equation.
- (b) Indentify any intermediates within the mechanism.
- (c) What is the reaction order with respected to each reactant?