題號: 414

國立臺灣大學 104 學年度碩士班招生考試試題

科目:工程數學(C)

題號: 414 共 Z 頁之第 / 頁

節次: 6

1-10 題為選擇題 請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

1. (5%) Which matrix is invertible?

(A)
$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (E) $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$

2. (5%) Find the matrix which is NOT diagonalizable.

(A)
$$\begin{bmatrix} 6 & 6 \\ -2 & -1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & 2 & -1 \\ 0 & -3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ (E) $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & -1 \end{bmatrix}$

- 3. (5%) For any $n \times n$ matrices A and B, select the false statement below.
 - (A) A is invertible if and only if $\det A \neq 0$.
 - (B) $\det AB = (\det A)(\det B)$
 - (C) $\det(A + B) = \det A + \det B$
 - (D) $\det A^T = \det A$
 - (E) If A is invertible, then $\det A^{-1} = \frac{1}{\det A}$
- 4. (5%) Which of the statements below are correct?
 - (A) For any matrix A, the matrices A^TA and AA^T are positive definite.
 - (B) For any invertible matrix A, the matrices A^TA and AA^T are positive definite.
 - (C) If A is positive definite, then there exists a positive definite matrix B such that $B^2 = A$.
 - (D) The sum of A and B in the last statement is a positive definite matrix.
 - (E) None of the above.
- 5. (5%) Let Q be an $n \times n$ orthogonal matrix. Which of the statements below are correct?
 - (A) Q^{-1} is also an orthogonal matrix.
 - (B) $QQ^T = I_n (I_n \text{ is an } n \times n \text{ identity matrix.})$
 - (C) Q is invertible.
 - (D) If λ is an eigenvalue of Q, then λ is 1 or -1.
 - (E) None of the above.
- 6. (5%) Which of the following subset of \mathbb{R}^3 is linearly independent?

(A)
$$\{ [1 \ 0 \ 0]^T, [0 \ 1 \ 0]^T, [1 \ 0 \ 1]^T \}$$

(B)
$$\{[1 \ 3 \ 5]^T, [2 \ 4 \ 6]^T\}$$

(C)
$$\{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \}$$

- (D) $\{[1 \ 2 \ 3]^T, [2 \ 4 \ 6]^T\}$
- (E) None of the above.
- 7. (5%) Which of the following subset of \mathbb{R}^3 is an orthogonal basis?

(A)
$$\{[1,0,0]^T,[0,1,-1]^T,[0,1,1]^T\}$$

- (B) $\{[1,0,0]^T,[0,0,1]^T,[0,0,0]^T\}$
- (C) $\{[3,2,0]^T, [-2,3,0]^T, [0,0,3]^T\}$
- (D) $\{[1,1,1]^T, [1,-1,0]^T, [1,1,-2]^T\}$
- (E) None of the above.

題號: 414

國立臺灣大學 104 學年度碩士班招生考試試題

科目:工程數學(C)

節次: 6

共 2 頁之第2 頁

8. (5%) Which of the following is a linear transformation?

$$(A) \ T: \mathbb{R}^2 \to \mathbb{R}^3, T(\left[\begin{array}{c} x \\ y \end{array}\right]) = \left[\begin{array}{c} 0 \\ x^2 \\ y \end{array}\right]$$

$$(B) \ T: \mathbb{R}^3 \to \mathbb{R}^3, T(\left[\begin{array}{c} x \\ y \\ z \end{array}\right]) = \left[\begin{array}{c} x+1 \\ x-y \\ z \end{array}\right]$$

$$(C) \ T: \mathbb{R}^2 \to \mathbb{R}^3, T(\left[\begin{array}{c} x \\ y \end{array}\right]) = \left[\begin{array}{c} x+z \\ y \end{array}\right]$$

$$(D) \ T: \mathbb{R}^3 \to \mathbb{R}^3, T(\left[\begin{array}{c} x \\ y \\ z \end{array}\right]) = \left[\begin{array}{c} x+z \\ y-z \\ y-x \end{array}\right]$$

- (E) None of the above.
- 9. (5%) Which of the following is an inner product defined on \mathbb{R}^4 ? Note that $\mathbf{u} = (u_1, u_2, u_3, u_4)$ and $\mathbf{v} = (v_1, v_2, v_3, v_4)$ are any given vectors in \mathbb{R}^4 .
 - (A) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$
 - (B) $\langle \mathbf{u}, \mathbf{v} \rangle = 4u_1v_1 + 3u_2v_2 + 2u_3v_3 + u_4v_4$.
 - (C) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 u_2 v_2 + u_3 v_3 + u_4 v_4$.
 - (D) $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + u_4 v_4$.
 - (E) None of the above.
- 10. (5%) Which of the following sets is an orthogonal basis for the designated vector space?

(A)
$$\left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 2\\-3 \end{bmatrix} \right\}$$
, for \mathcal{R}^2 with $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$.

- (B) $\{\cos x, \sin x\}$, for $\mathcal{C}[0, 2\pi]$ with $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$.
- (C) $\{1, x, x^2\}$ for \mathcal{P}_3 with $\langle f, g \rangle = \int_{-2}^2 f(x)g(x)dx$.

(D)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ for } \mathcal{R}^3 \text{ with } \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T M \mathbf{y} \text{ where } M = \begin{bmatrix} 1 & 3 & 0\\3 & 1 & 3\\0 & 3 & 1 \end{bmatrix}$$

(E) None of the above.

11-13 題為計算題 請於試卷內之「非選擇題作答區」標明題號依序作答。

11. Find the general solution of the following differential equations:

(25 scores)

(a)
$$\frac{dy(x)}{dx} + y(x) - e^{2x} = 0$$

(b)
$$\frac{dy(x)}{dx} - y(x) + e^{2x}y^2(x) = 0$$

(c)
$$y^{(4)}(x) - y^{(3)}(x) - 2y''(x) + 2e^x + 8 = 0$$

12. (a) Find the inverse Laplace transforms of

(15 scores)

$$\frac{s^2}{s^2-2s+3}$$

(b) Find the Laplace transform of

$$e^{t} \int_0^t e^{-2\tau} \sinh(t-\tau) \cos \tau \, d\tau$$

13. Solve the partial differential equation

(10 scores)

$$\frac{\partial u}{\partial x^2} + 2\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} + u$$