i號: 433 國立臺灣大學 104 學年度碩士班招生考試試題

科目:電子學(E)

節次: 7 共 2 頁之第 /

1. Please choose the correct statement(s). (5 %)

(A) In thermal equilibrium, extrinsic silicon semiconductor has a smaller electrical conductivity than intrinsic silicon semiconductor does due to the effect of impurities at 300 K.

433

- (B) In thermal equilibrium, p-type silicon semiconductor is positively-charged and n-type silicon semiconductor is negatively-charged at 300 K.
- (C) A silicon diode has low radiative emission efficiency due to the effect of scattering at 300 K.
- (D) The intrinsic carrier concentration of a large-bandgap semiconductor material is smaller than a small-bandgap semiconductor material at 300 K.
- (E) GaAs has a larger electron drift velocity than Silicon does under the same moderate electrical field application due to the effect of smaller electron effective mass at 300 K.
- 2. Please choose the correct statement(s). (5 %)
 - (A) The excess concentration of minority carriers in the *pn* junction under forward bias will decay with distance linearly due to the recombination process with majority carriers.
 - (B) The charge-storage effects in the *pn* junction can be modeled by junction capacitance in reverse bias and diffusion capacitance in forward bias.
 - (C) The depletion region in the p-side will be smaller than that in the n-side if the n-type doping is smaller than the p-type doping in the pn junction diode.
 - (D) When a diode is forward-biased, the forward conducting current can be formed by holes drifting from p-side to n-side and electrons drifting from n-side to p-side, depending on the values of applied voltage and electrical field.
 - (E) The turn-on voltage of a diode is smaller if the ambient temperature is increased.
- 3. Consider a Si npn bipolar junction transistor (BJT). The doping level are 10^{18} , 10^{17} , 10^{16} cm⁻³ for emitter, base, and collector, respectively. The thickness of emitter, base, and collector are all 1 μ m. Assume $n_i = 1.5 \times 10^{10}$ cm⁻³, $\epsilon_s = 11.7$, $\epsilon_0 = 8.85 \times 10^{-14}$ F/cm.
 - (a) Draw the schematic band diagram in thermal equilibrium (assume in 300 K). Label E_C , E_V , and E_F in your plot. Identify the range of depletion region at BE and BC junction correctly. (7%)
 - (b) Draw the distribution of "minority carrier concentration" in the emitter, base and collector region under forward-active operation. (3 %)
 - (c) What are the two main components of base current? (2 %)
 - (d) If we can change the emitter material only to another kind of semiconductor that has larger bandgap than silicon, how will that affect current gain $\beta (\equiv I_C/I_B)$ of the transistor and why? (3 %)
- 4. Consider a Si enhancement-mode metal-oxide-semiconductor field-effect transistor (MOSFET).
 - (a) Draw and label correctly the cross section and all terminals of an NMOS. Indicate the induced channel shape under (1) no V_{DS} ; (2) small V_{DS} , (3) V_{DS} > V_{GS} . (3%)
 - (b) Derive the relationship $i_D v_{DS}$ in triode region. (5 %)
 - (c) Explain the channel-length modulation and its effect on drain current. (3 %)
 - (d) If we can shrink the gate length extremely, say below 100 nm, how will that affect the transistor performance in terms of channel-length modulation in (c) and why? (4 %)
- 5. The circuit in the Figure 1 is a non-inverting amplifier and the circuit parameters of the OP amp are given as: low-frequency gain $(A_0) = 80 \text{ dB}$, unity-gain bandwidth $(f_t) = 1 \text{ MHz}$, rated output voltage $= \pm 15 \text{ V}$,

題號: 433 國立臺灣大學 104 學年度碩士班招生考試試題

科目:電子學(E)

題號: 433 節次: 2 頁之第 2

maximum output current = ± 5 mA, slew rate = $1 \text{ V/}\mu\text{s}$.

- (a) Assume $R_1=1~k\Omega$ and $R_L=\infty$. For an amplifier bandwidth $\geq 10~kHz$, find the maximum voltage gain in dB and the value of R₂. (5 %)
- (b) A low-frequency sine wave is applied to the input of the amplifier with R_1 = 1 k Ω , R_2 = 9 k Ω , and R_1 = 2 k Ω . Find the maximum input amplitude of the amplifier such that the output waveform is not distorted. (3 %)
- (c) For an amplifier with $R_1 = \infty$ and $R_L = \infty$, find the maximum input amplitude of a sine-wave at 50 kHz. (2%)

Figure 1

Figure 2

- 6. For the BJT circuit in Figure 2, assume that Q_1 and Q_2 are matched, and $I_0 = 10 \times I_{REF}$.
 - (a) Find the expression of the current I_0 . (10 %)
 - (b) If the temperature of the circuit rises from 27 °C to 57 °C, how will I_0 change? Express the change in percentage. (5 %)
- 7. For the MOSFET cascode amplifier in Figure 3,
 - (a) Draw its equivalent small-signal equivalent circuit. The output resistance of the transistor needs to be included. (5 %)
 - (b) Derive the overall transconductance gain $G_m = i_0/v_i$. (5 %)
 - (c) Derive the amplifier's output resistance R_0 . (5 %)
- 8. For the circuit in Figure 4,
 - (a) Derive the expression for input capacitance C_{in}. (10 %)
 - (b) Use open-circuit time constant approximation to derive the expression of the upper 3-dB frequency ω_H . (10%)

Figure 3

Figure 4

試題隨卷繳回