題號: 278 國立臺灣大學104學年度碩士班招生考試試題

科目:熱力學(C)

節次: 8

題號:278 共 2 頁之第 1 頁

1. A vessel contains R-134a at 100 °C and 3.00 MPa.

- (a) From the given property table, find the specific volume. (10 %)
- (b) Use the ideal-gas model to calculate the specific volume. Compare the result with that you find in (a) and comment on the relative magnitudes. [The molar mass is 102.03 kg/kmol.] (10%)
- (c) Use the given property table to calculate the Helmholtz free energy and the Gibbs free energy. (5 %)

Superheated R-134a

Temp.	$v = (m^3/k_g)$	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	ν (m³/kg)	u (kJ/kg)	/ı (kJ/kg)	s (kJ/kg-K)
	1600 kPa (57.90 C)				2000 kPa (67.48°C)			
Sat.	0.01215	407.11	426.54	1.7051	0.00930	410.15	428.75	1.6991
60	0.01239	409.49	429.32	1.7135			31-1-1-1-1	e man migra
70	0.01345	420.37	441.89	1.7507	0.00958	413.37	432.53	1.7101
80	0.01438	430.72	453.72	1.7847	0.01055	425.20	446.30	1.7497
90	0.01522	440.79	465.15	1.8166	0.01137	436,20	458.95	1.7850
100	0.01601	450.71	476.33	1.8469	0.01211	446.78	471.00	1.8177
110	0.01676	460.57	487.39	1.8762	0.01279	457.12	482.69	1.8487
120	0.01748	470.42	498.39	1.9045	0.01342	467.34	494.19	1.8783
130	0.01817	480.30	509.37	1.9321	0.01403	477.51	505.57	1.9069
140	0,01884	490.23	520.38	1.9591	0.01461	487,68	516.90	1,9346
150	0.01949	500.24	531.43	1.9855	0.01517	497.89	528.22	1.9617
160	0,02013	510,33	542.54	2,0115	0.01571	508,15	539.57	1.9882
170	0.02076	520.52	553.73	2.0370	0.01624	518.48	550,96	2.0142
180	0.02138	530.81	565.02	2.0622	0.01676	528:89	562.42	2.0398
	ji teliyaya. Bi teliyaya.	3000 kPa	(86.20°C)			4000 kPa	(100.33°C)	
Sat.	0.00528	411,83	427.67	1.6759	0.00252	394.86	404,94	1.6036
90	0.00575	418.93	436.19	1,6995				
100	0.00665	433.77	453.73	1.7472	Provide:			- Charles About An an
110	0.00734	446.48	468.50	1.7862	0.00428	429.74	446.84	1.7148
120	0.00792	458.27	482.04	1.8211	0.00500	445.97	465.99	1.7642
130	0.00845	469.58	494.91	1.8535	0.00556	459,63	481.87	1.8040
140	0.00893	480.61	507.39	1.8840	0.00603	472.19	496.29	1.8394
150	0.00937	491.49	519.62	1.9133	0.00644	484.15	509.92	1.8720
160	0.00980	502.30	531.70	1.9415	0.00683	495.77	523.07	1.9027
170	0.01021	513.09	543.71	1.9689	0.00718	507.19	535.92	1.9320
180	0.01060	523.89	555.69	1.9956	0.00752	518.51	548.57	1.9603
Silver Commence								

- 2. Heat engines are cyclic devices where the working fluid returns to its initial state at the end of each cycle.
- (a) Describe the four processes in a Carnot cycle and draw the corresponding P-v (pressure-volume) curves. (10 %)
- (b) Using the ideal-gas model for the working fluid, calculate the work, the heat transfer, and the thermal efficiency for a Carnot cycle. (10 %)
- (c) Calculate the net entropy change for a Carnot cycle and comment on the relation of your result with the second law of thermodynamics. (5 %)

題號: 278 國立臺灣大學 104 學年度碩士班招生考試試題

科目:熱力學(C)

278

3. Air at the rate of 30 kg/min is compressed in a centrifugal air compressor from 1 bar to 3 bar. The temperature increases from 20° C to 100° C during compression. Neglect the heat interaction between the compressor and surroundings and changes in potential and kinetic energy. The surrounding air temperature is 20° C.

Take for air, Cp = 1.005 kJ/kg K, R = 0.287 kJ/kg KDetermine (a) actual power (10%) and (b) minimum power required to run the compressor. (10%)

4. Calculate the decrease in available energy when 10 kg of water at 70° C mixes with 20 kg of water at 20° C, the pressure being taken as constant and the temperature of the surroundings being 10° C. (15%)

Take Cp of water as 4.18 kJ/kg K

5. A heat pump working on a reversed Carnot cycle takes in energy from a reservoir maintained at 5°C and delivers it to another reservoir where temperature is 77°C. The heat pump derives power for its operation from a reversible engine operating within the higher and lower temperatures of 1077°C and 77°C. For 100 kJ/kg of energy supplied to reservoir at 77°C, estimate the energy taken from the reservoir at 1077°C. (15 %)

試題隨卷繳回