題號: 233

國立臺灣大學 104 學年度碩士班招生者試試題

科目:工程數學(B)

233

節次:

共 2 頁之第

※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號。

1. (10%) Given $L^{-1}\left\{\frac{1}{\sqrt{s^2+1}}\right\} = J_0(t)$ and $L^{-1}\left\{\frac{s}{\sqrt{s^2+1}}-1\right\} = -J_1(t)$

Solve the nonlinear integral equation

$$x(t) - \frac{1}{2} \int_0^t x(t-\tau)x(\tau) d\tau = \frac{1}{2} \sin(t)$$

by Laplace transformation. Express your answer in terms of $J_n(t)$ and $\delta(t)$.

(10%) A boundary value problem having the form

$$\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] + \left[q(x) + \lambda r(x) \right] y = 0 \quad \text{for } a \le x \le b;$$

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0$$
 and $\beta_1 y(b) + \beta_2 y'(b) = 0$.

Show that the eigenfunctions y_1 and y_2 belonging to two different eigenvalues λ_1 and λ_2 are orthogonal with respect to r(x) in (a,b).

3. (15%) In calculus, the curvature of a curve y = f(x) is defined as

$$\kappa = \frac{y''}{\left[1 + \left(y'\right)^2\right]^{3/2}}$$

Find $\dot{y} = f(x)$ for which $\kappa = 1$. For simplicity, ignore constants of integration.

4. (35%) Consider an elastic string whose displacement function satisfies

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \quad \text{for } t > 0.$$

(a) If the string is infinitely long and the initial conditions are

$$y(x,0) = 0$$
 and $\frac{\partial y}{\partial t}(x,0) = \delta(x)$,

determine the Fourier transform of the displacement function and the maximum displacement value.

(b) If the string has length L with conditions:

$$y(0,t) = 0$$
 and $y(L,t) = 0$;

$$y(x,0) = \sin\left(\frac{2\pi x}{L}\right)$$
 and $\frac{\partial y}{\partial t}(x,0) = \sin\left(\frac{5\pi x}{L}\right)$,

solve for the displacement function.

國立臺灣大學 104 學年度碩士班招生考試試題

題號: 233

頁之第 2 共 2

科目:工程數學(B) 節次: 6

- 5. (15%) Let $\phi(x, y) = x + \ln(x^2 + y^2)$ and $\mathbf{v}(x, y) = (x^2 \cos y)\mathbf{i} + (y^2 \sin x)\mathbf{j}$ be 2-D scalar and vector functions, respectively; and let $\mathbf{u}(x, y) = \nabla \phi + \nabla \times \mathbf{v}$. Write down the answers to the following questions. (Derivations are not required.)
 - (a) Evaluate the surface integral $\iint \nabla \cdot \mathbf{u} \, dA$ over an annulus region between two concentric circles as shown below.

(b) Evaluate the line integral $\oint_C \mathbf{n} \cdot \mathbf{u} \, d\ell$ over a closed curve C as shown below. (with \mathbf{n} denoting a unit vector normal to the curve C)

- (c) Evaluate the line integral $\oint \mathbf{u} \cdot d\mathbf{r}$ along a circle C of radius 1 centered at the origin. (where $d\mathbf{r}$ is a displacement vector along the curve C)
- 6. (15%) Let z = x + iy denote the complex variable, \overline{z} be the complex conjugate of z, and f(z) a complex function. Answer the following questions. (Derivations are not required.)
 - (a) If the real part of an analytic function f(z) is $xe^x \cos y ye^x \sin y$, what is the imaginary part of
 - (b) Let f(z) be analytic on and inside the unit circle |z| = 1. If on the circle |z| = 1, $f(e^{i\theta}) = \frac{-3 + i4\sin\theta}{5 + 4\cos\theta}$, what is the expression of the function f(z)?
 - (c) Evaluate the complex integral $\oint_C z^2 \sin \bar{z} dz$ over the closed contour C defined by |z| = 1.

試題隨卷繳回