題號: 258 國立臺灣大學 104 學年度碩士班招生考試試題

科目:電磁學(B)

題號: 258 節次: 4 共 / 頁之第 / 頁

1.(20%) Consider current distribution with uniform density $J_0\bar{a}_z$ A/m² in the volume between the planes y = -a and y = 0, and with uniform density $-J_0\bar{a}_z$ A/m² in the volume between the planes y = 0 and y = a. Find the magnetic flux density everywhere.

- 2.(20%) A magnetic field is given in the xz-plane by $\vec{B} = B_0 \cos(x v_0 t) \vec{a}_y$ Wb/m². Consider a regid square loop situated in the xz-plane with its vertices at (x, 0, 1), (x, 0, 2), (x+1, 0, 2), and (x+1, 0, 1).
 - (a) Find the emf induced around the loop in the sense defined by connecting the above points in succession.
 - (b) What would be the induced emf if the loop is moving with the velocity $\vec{v} = v_0 \vec{a}_z$ m/s instead of being stationary?
- 3.(20%) The current densities of two infinite, plane, parallel current sheets in free space are given by

$$\vec{J}_1 = -J_0 \cos \omega t \vec{a}_x$$
 in the $z = 0$ plane $\vec{J}_2 = -aJ_0 \cos \omega t \vec{a}_x$ in the $z = \lambda/2$ plane

Find the electric field intensities and magnetic field intensities everywhere.

4. (20%) A current distribution is given in cylindrical coordinates by

$$\vec{J} = \begin{cases} J_0 \vec{a}_z & for \quad r < a \\ -J_0 \vec{a}_z & for \quad 2a < r < 3a \end{cases}$$

Find the energy stored in the magnetic field of the current distribution per unit length in the z-direction.

5.(20%) Region 1 (z < 0) is a perfect dielectric, whereas region 2 (z > 0) is a perfect conductor. For a uniform plane wave having the electric and magnetic fields

$$\vec{E} = E_0 \cos(\omega t - \beta z) \vec{a}_x$$

$$\vec{H} = (E_0 / \eta) \cos(\omega t - \beta z) \vec{a}_y$$

is normal incident on the interface from region 1.

- (a) Find electric and magnetic fields of the reflected wave.
- (b) Find the total electric and magnetic fields in the dielectric region.
- (c) Find the current density on the surface of the perfect conductor.

試題隨卷繳回