國立臺灣大學 104 學年度碩士班招生考試試題 科目:電子學(A)

題號: 257

共 頁之第

Please show your work leading to your answers. Please also make proper assumptions for your work.

1. (40%) Please find

節次:

- (a) (10%) the DC voltage of Vin (neglect channel length modulation effect for DC)
- (b) (10%) the small-signal voltage gain of the following circuit (v_{out}/v_{in})
- (c) (10%) the output resistance
- (d) (10%) the minimum supply voltage required for the following circuit such that all transistors operate in the saturation region.

$$[\mu_n C_{ox} = 120 \mu A/V^2, \mu_p C_{ox} = 50 \mu A/V^2, V_{tn} = -V_{tp} = 0.7V, \text{ and } \lambda_n = \lambda_p = 0.05 V^{-1}]$$

- 2. (10%) Please find the resistivity of intrinsic germanium given that $n_i = 2.4 \times 10^{13}$ cm⁻³, $\mu_n = 3900$ cm²/V·s, and $\mu_p = 1900 \text{ cm}^2/\text{V} \cdot \text{s}$.
- 3. (10%) Please draw a CMOS logic implementation of Y=AB+CD.
- 4. (40%) For the following trans-resistance amplifier circuit, Please find
 - (a) (10%) the DC operating point of the transistor (I_{DS} & V_{GS} , neglect λ for DC),
 - (b) (10%) the small-signal gain (v_{OUT}/i_{IN}),
 - (c) (10%) the input resistance R_{IN} ,
 - (d) (10%) the output resistance R_{OUT} .

[note: i_{IN} is a small-signal current source, $\mu_n C_{ox} = 120 \mu A/V^2$, $V_{tn} = 0.5 V$, and $\lambda_n = 0.02 V^{-1}$]

