題號: 247

節次: 1

國立臺灣大學 104 學年度碩士班招生考試試題

科目:工程數學(L)

題號: 24′

共 / 頁之第 / 頁

1. (15%) Let

$$x[n] = \begin{cases} 1, & 0 \le n \le 9 \\ 0, & \text{elsewhere} \end{cases} \text{ and } h[n] = \begin{cases} 1, & 0 \le n \le N \\ 0, & \text{elsewhere} \end{cases}$$

where $N \le 9$ is an integer. Determine the value of N, given that y[n] = x[n] * h[n] and y[4] = 5, y[14] = 0. (y[n] is the convolution of x[n] and h[n].)

2. The differential equation

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t),$$

- (a) (15%) Determine h(t) by using Fourier transform of $H(j\omega)$, given that y(t) = x(t) * h(t).
- (b)(20%) If $x(t) = e^{-t}u(t)$, determine y(t) by using Fourier transform of $Y(j\omega)$, given

$$u(t) = 1, t \ge 0$$
; $u(t) = 0, t < 0$.

- 3. (25%) Given that $A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$, please compute e^A . (Hint: use Cayley-Hamilton theorem and Taylor series expansion for e^A)
- 4. (25%) Given a differential equation $U\frac{d}{dx}(x^2U)=C$, where U is the dependent variable, x is the independent variable and C is a constant. The initial condition is that at $x=x_0, U=U_0$.

Please derive the solution in the form of $U^2 = U_0^2(...) + C(...)$

(Hint: use an integration factor to solve the differential equation)

試題隨卷繳回