考試科目 統計學 所別 經濟學系 考試時間 3月1日(日)第三節

注意事項:

- (1) 請依題號順序作答。
- (2) 不可使用計算機。
- (3) 答題若過程錯誤 (或沒有過程) 但答案正確, 將以「零分」計算。
 - 1. (25%) The joint density function of X and Y is given by

$$f_{X,Y}(x, y) = \begin{cases} kxy^2, & x - 1 \le y \le 1 - x, 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (1) (5%) Find the value of k that makes this a probability density function.
- (2) (5%) Find $\mathbb{P}(X > Y)$.
- (3) (5%) Derive the marginal density of Y.
- (4) (5%) Find $\mathbb{P}(Y > 0 | X = 0.75)$.
- (5) (5%) Are the random variables X and Y independent? (You should clearly write down the reason.)
- 2. (15%) A random sample of size n is taken from a population with the probability mass function:

$$p_Y(y) = \theta (1 - \theta)^{y-1}, \quad y = 1, 2, 3, \dots$$

- (1) (5%) Find the method of moments estimator for θ .
- (2) (5%) Find the maximum likelihood estimator for θ .
- (3) (5%) Which one is better? (You should clearly write down the details for your criteria and comparisons)
- 3. (10%) Suppose one observation from the probability density function $f_Y(y) = \theta e^{-\theta y}$, y > 0, is to be used to test $H_0: \theta = 1.5$ versus $H_1: \theta < 1.5$. The decision rule calls for the null hypothesis to be rejected if $y \ge \ln 15$.
 - (1) (5%) Find the probability of Type I error, α .
 - (2) (5%) Find the testing **power** as a function of θ .

註

國立政治大學 104 學年度碩士班招生考試試題

第 2 頁,共 2 頁

考	試	升	B	統計學	所	別	經濟學系	考	試	時	間	3	月	1	B(日)	第	Ξ	節
				>1613	-			<u>L</u> _				<u> </u>								

4. (20 points) Consider the following model for panel data with a time effect δ_t ,

$$y_{it} = \alpha_0 + \alpha_1 x_{it} + \alpha_2 \delta_t + e_{it}.$$

Show how α_1 can be estimated by the ordinary least squares method using "time-demeaned" procedure.

5. (30 points) Given the model

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + u_t,$$

with constraints $\beta_0 + \beta_1 = \alpha$ and $\beta_0 + \beta_2 = -\alpha$, suppose that all the classical linear regression assumptions hold.

- (a) As α is unknown, how do you test the constraints in the model?
- (b) How would you estimate α ?
- (c) Is your estimator $\hat{\alpha}$ in (b) the best linear unbiased estimator?