朝陽科技大學 101 學年度碩士班招生考試試題

系(所)別:應用化學系

總分: 100 分

組 別:一般生

目:物理化學及無機化學

第/頁共4頁

物理化學(50%)

- 1. (5%) Calculate the molar volume of Xe(g) at 500.0 K and 200.0 atm by treating it as a van der Waals gas: $P = \frac{RT}{V-b} \frac{a}{V^2}$, a = 4.137 atm L^2/mol^2 , b = 0.0516 L/mol.
- (5%) The constant-pressure heat capacity of a sample of perfect gas was found to be C_{P,m} = 20.17 J/K
 mol. Calculate \(\Delta U_m(J/mol) \) when the temperature of this perfect gas is raised from 20°C to 200°C at
 constant volume.
- (5%)Calculate the standard Gibbs energy of the reaction: 2CH₃CHO(g) + O₂(g) → 2CH₃COOH(l).

(1 bar, 298	.15 K)	CH ₃ CHO (g)	O ₂ (g)	CH₃COOH(I)
Δ _f H°(kJ	/mol)	-166.19	0	-484.5
Δ _f G°(kJ	/mol)	-128.86	0	-389.9

 (5%) If the enthalpy of reaction is a constant, calculate the Gibbs energy change for the above reaction: 2CH₃CHO(g) + O₂(g) → 2CH₃COOH(l) at 1 bar and 100 K.

[the Gibbs-Helmholtz equation:
$$\left(\frac{\partial (G/T)}{\partial T}\right)_P = -\frac{H}{T^2}$$
]

- 5. (5%) The osmotic pressure of solution of an enzyme in water was measured at 20°C and the pressure was expressed in terms of the height of the solvent (i.e. water). If the concentration of the solution is 3.221 mg/mL, and the osmotic pressure is 5.746 cm, estimate the molar mass of the enzyme.
 [The density of water at 20°C is 0.997 g/mL.]
- 6. (5%) The equilibrium constant of the reaction $2SO_2(g) + O_2(g) \xrightarrow{} 2SO_3(g)$ is 4.0×10^{24} at 300K, 2.5×10^{10} at 500K. Estimate the reaction enthalpy, which is supposed be a constant.
- (5%) The rate of a second-order reaction was measured over the temperature range 300-500 K, and the rate constants are reported below. Find the activation energy, E_a.

T (K)	300	350	400	450	500
k (L/mol s)	7.9 × 10 ⁶	3.0×10^{7}	7.9×10^{7}	1.7 × 10 ⁸	3.2 × 10 ⁸

朝陽科技大學 101 學年度碩士班招生考試試題

系(所)別:應用化學系

媳分: 100 分

組 別:一般生

日:物理化學及無機化學

第 2 頁共 4 頁

8. (5%) The Michaelis-Menten mechanism is often used to describe enzyme catalysis reaction:

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$
, where E is enzyme, S is substrate, and P is product. Please express the Michaelis constant, K_{M_1} in terms of k_1 , k_1 , k_2 .

9. (5%) How many radial nodes does the atomic orbital $5f_{z(x^2-y^2)}$ have?

10. (5%) According to the molecular orbital theory, which one of O2, O2*, O2 is paramagnetic?

朝陽科技大學 101 學年度碩士班招生考試試題 (所)別:應用化學系 總分: 100 分 別:一般生 目:物理化學及無機化學 無機化學 (50%) 1. The Pt-Cl stretching band is observed at 314 cm⁻¹ in cis-[Pt ((CH₃)₃As)₂Cl₂] but in the trans isomer it is seen at 375 cm⁻¹. Explain the difference in band position for the two isomers. (5%)2. Predict the products (I, II) of the following substitution reactions based on trans effect (10%) $[PtCL]^{2}$ + CO \longrightarrow (D), (D) + NH₃ \longrightarrow (ID)

3. Determine which of the following is paramagnetic. Explain your choice and estimate its magnetic moment (5%)[Cr(CN)6]4. [Fe(H2O)6]2+ [IrF6]3-

- 4. List the following acids in order of acid strength in aqueous solution, and explain your reason. (5%)HClO, HClO₂, HClO₄, HClO₃
- 5. Dissolution of KF in IF5 increases the conductivity of IF5. Suggest an explanation. (5%)
- 6. On the basis of the 18- electron rule, identify the first-row transition metal for each of the complexes: (A) H₁CM(CO)₅ (B) (n⁴-C₈H₈)M(CO)₃ (10%)
- 7. Using the angular overlap model, determine the energies of the d orbitals of the metal for trigonalbipyramidal ML₅ complex. Assume that the ligands are capable of sigma interaction only. (10%)

朝陽科技大學 101 學年度碩士班招生考試試題

系(所)別:應用化學系

H 目:物理化學及無機化學 第4頁共 ←頁

 $\begin{array}{c|c}
1 & 3 \\
4 & \frac{y}{x} & 2 \\
5 & 6
\end{array}$

Tetrahedral positions

Trigonal-bipyramidal positions

Sigma Interactions (all in units of e_{σ})

Metal d Orbital

Ligand Position	z^2	x^2-y^2	xy	хz	уz
1	1	0	0	0	0
2	14	$\frac{3}{4}$	0	0	0
3	1/4	$\frac{3}{4}$	0	0	0
4	1/4	3 4	0	0	0
5	1/4	<u>3</u>	0	0	0
6	1	0	0	0	0
7	0	0	1/3	1/3	1/3
8	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
9	0	0	$\frac{1}{3}$	$\frac{1}{3}$	1/3
10	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
11	1/4	3 16	9 16	0	0
12	1/4	$\frac{3}{16}$	9 16	0	0