國立臺灣科技大學101學年度碩士班招生試題

系所組別: 電子工程系碩士班乙三組、丙組

科 目: 電磁學

(總分為100分)

1. In spherical coordinates, prove

(a)
$$\frac{\partial \hat{r}}{\partial \theta} = \hat{\theta}$$
 (5%)

(b)
$$\frac{\partial \hat{r}}{\partial \omega} = \hat{\varphi} \sin \theta$$
 (5%)

(c)
$$\nabla \bullet \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$
 (10%)

[Hint:
$$\nabla = \hat{r} \frac{\partial}{\partial r} + \frac{\hat{\theta}}{r} \frac{\partial}{\partial \theta} + \frac{\hat{\varphi}}{r \sin \theta} \frac{\partial}{\partial \varphi}$$
 and $\vec{A} = \hat{r} A_r + \hat{\theta} A_\theta + \hat{\varphi} A_\varphi$]

- 2. (a) An electric dipole consisting of equal and opposite point charges +Q and -Q separated by a small distance s is shown in Fig. 1. Determine the potential V in terms of Q, s, θ , r and ϵ_0 at an arbitrary point P at a distance r $^3>>$ s³ from the dipole? (10%)
 - (b) The linear electric quadrupole is an arrangement of three charges as in Fig. 2. Determine the potential V in terms of Q, s, θ , r and ϵ_0 at an arbitrary point P at a distance r $^3>> s^3$ from the quadrupole? (10%)

Fig. 1 Electrical Dipole

Fig. 2 Electrical Quadrupole

3. Obtain a formula for the electric field intensity on the axis of a circular disk of radius b that carries a uniform surface charge density ρ_S , as shown in Fig. 3? (10%)

Fig. 3 A Uniformly Charged Disk

國立臺灣科技大學101學年度碩士班招生試題

系所組別: 電子工程系碩士班乙三組、丙組

科 目: 電磁學

(總分為100分)

4. Consider the transmission line circuit shown in Fig. 4. Assume that the switch is closed at t=0. Please calculate the load voltage v_C when $t=\infty$. (10 %)

5. Consider the transmission line circuit shown in Fig. 5. Please write down the expressions for (a) the input impedance Z_A (5 %) and (b) the input impedance Z_B (5 %). (c) Please derive the resonance condition in terms of Z_h , Z_l , θ_h , and θ_l when the two sub-circuits are connected together. (10 %).

Fig. 5

6. Consider the rectangular waveguide circuit shown in Fig. 6. (a) Please calculate in ascending order the cutoff frequencies of the first two modes in waveguide 1 (8%).
(b) Please calculate in ascending order the cutoff frequencies of the first two modes in waveguide 2 (8%). (c) Please identify the frequency range that ensures TE₁₀ mode propagation without higher order modes. (4 %).

