電子工程系碩士班乙一組

通信系統

(總分為100分)

1. The joint probability function of two discrete random variables Xand Y is given below:

probability function of two discrete rando
given below:
$$\begin{cases} \frac{1}{2} & \text{if } (x,y) = (0,0), \\ \frac{1}{4} & \text{if } (x,y) = (0,1), \\ \frac{1}{20} & \text{if } (x,y) = (1,0), \\ \frac{1}{5} & \text{if } (x,y) = (1,1), \\ 0 & \text{otherwise}. \end{cases}$$

- (a) (3%) Let Var(X) denote the variance of X. Then, Var(X) = ?
- (b) (3%) Let E(Y) denote the mean of Y. Then, E(Y) = ?
- (c) (3%) Given the condition of X=1, what is the probability of Y=0? In other words, Prob(Y=0 | X=1) = ?
- (d) (3%) Given the condition of Y = 0, what is the probability of X = 1? In other words, Prob(X=1|Y=0)=?
- (e) (3%) Are X and Y independent?
- 2. The Fourier transform of x(t) is defined as

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

It is known that the Fourier transform of $e^{-\pi t^2}$ is $e^{-\pi f^2}$

(a) (5%) Find the Fourier transform of $\frac{1}{\sqrt{2\pi}}e^{-t^2/2}$.

系所組別: 電子工程系碩士班乙一組

科 目: 通信系統

(總分為100分)

- (b) (5%) Find the Fourier transform of $\cos(2\pi f_c t) \cdot e^{-t^2/2}$, where f_c is a given constant.
- 3. (10%) In this problem, let us consider data transmission over an AWGN channel. Let E_b denote the energy (measured in joule) consumed in the transmission of one data bit. Let $N_0/2$ denote the two-sided power spectral density (measured in watts/Hz) of the Gaussian noise. Please sort the four cases listed below according to their bit-error-rate performance (from the best to the worst).
 - (A) BPSK, with $E_b/N_0 = 10 \text{dB}$
 - (B) coherent BFSK, with $E_b/N_0 = 12dB$
 - (C) noncoherent BFSK, with $E_b/N_0 = 12dB$
 - (D) QPSK, with $E_b/N_0 = 11dB$
- 4. Let us consider BPSK demodulation in this problem. The transmitter either sends out $+\sqrt{E_b}$ or sends out $-\sqrt{E_b}$. In the channel, the transmitted signal is corrupted by an additive noise W, which is distributed as zero-mean Gaussian with a variance of $N_0/2$. In other words, the received signal is $z = \pm \sqrt{E_b} + W$ (obviously, the sign of $\sqrt{E_b}$ depends on what had been sent by the transmitter). The decision rule is:

Decide that
$$+\sqrt{E_b}$$
 was sent if $z > \tau$,

where τ is some threshold value. Let us adopt the MAP (i.e.

系所組別: 電子工程系碩士班乙一組

科 目: 通信系統

(總分為100分)

maximum a-posteriori) criterion for the determination of τ . Assume that we have the a-priori information: Prob(Transmitter sends out $+\sqrt{E_b}$) = 2/3

- (a) (4%) Which of the three cases below is correct: (A) $\tau > 0$, (B) $\tau = 0$, (C) $\tau < 0$?
- (b) (8%) Find the exact value of τ . Please express your answer in terms of E_b and N_o .
- (c) (3%) Let $\operatorname{Prob}(\operatorname{error} | A \text{ was sent})$, where A is either $+\sqrt{E_b}$ or $-\sqrt{E_b}$, denote the probability of error in decision when A was sent by the transmitter. Is it true that $\operatorname{Prob}(\operatorname{error} | +\sqrt{E_b} \text{ was sent}) > \operatorname{Prob}(\operatorname{error} | -\sqrt{E_b} \text{ was sent})$?
- 5. (10%) Please prove that the single-sideband modulated signal can be expressed as $\frac{1}{2}m(t)\cos(2\pi f_c t)\pm\frac{1}{2}\hat{m}(t)\sin(2\pi f_c t)$, where m(t) is the message signal, $\hat{m}(t)$ is the Hilbert transform of m(t), and f_c is the center frequency.
- 6. (10%) Suppose that the message signal $m(t) = 10^3 \sin c^2 (10^4 t)$ is FM modulated with the frequency sensitivity equal to 10, please find the bandwidth of the modulated FM signal.
- 7. Suppose that the bandwidth is 1MHz, the center frequency is 900MHz, and QPSK, 16-QAM, and 64-QAM, whose bit error rates (BERs) are 10^{-(4+SNR)}, 10^{-(3+SNR)}, and 10^{-SNR}, respectively, are used for transmission, answer following questions:

系所組別: 電子工程系碩士班乙一組

科 目: 通信系統

(總分為100分)

- (a) (10%) Suppose that SNR=2dB and BER requirement is BER<10⁻⁴, which modulation can be used for transmission?
- (b) (10%) Based the result of (a), find the maximum transmission bit rate if there is no inter-symbol-interference.
- 8. (10%) Suppose that the received signal is $r(t)=s_k(t)+n(t)$, where $0 \le t \le 2$. The $s_k(t)$ for $1 \le k \le 4$ is shown in the figure below and n(t) is white Gaussian with zero mean and two-sided power spectral density $N_0/2$, please compute the symbol error rate.

Figure

