系所組別: 自動化及控制研究所碩士班乙組

科 目: 控制系統

(總分為100分)

1. (15%) A block diagram is shown in Figure 1. The system parameters are given as T = 0.1, J = 0.01, and $K_i = 10$.

- (a) When $r(t) = tu_s(t)$, where $u_s(t)$ is a unit step function, determine how the values of K and K_t affect the steady-state value of e(t). Find the restrictions on K and K_t so that the system is stable. (5%)
- (b) Let r(t) = 0. Determine how the values of K and K_t affect the steady-state value of y(t) when the disturbance input $T_d(t) = u_s(t)$. (5%)
- (c) Let K = 0.1 and r(t) = 0. Find the value of K, so that the complex roots of the characteristic equation will have a real part of -2.5. Find all three roots of the characteristic equation. (5%)

Figure 1

- 2. (15%) A block diagram is shown in Figure 2.
 - (a) Construct the characteristic equation.

(5%)

- (b) For K = 10, sketch the root locus of the characteristic equation for $K_t \ge 0$. (5%)
- (c) Indicate the asymptotes, the intersection of asymptotes, the breakaway-point equation, and the breakaway points.

 (5%)

Figure 2

系所組別: 自動化及控制研究所碩士班乙組

科 目: 控制系統

(總分為100分)

3. (15%) A system is modeled by the following state equations:

$$\dot{x}_1 = -2x_2, \quad \dot{x}_2 = -2u$$

where x_1 and x_2 are the state variables, and u is a control signal.

The output equation is $y = x_1$.

Let the controller be a PD controller, which is $G_c(s) = K_P + K_D s$. The block diagram of the system is shown in Figure 3.

- (a) Find the parameters of the PD controller, K_P and K_D , so that the roots of characteristic equation correspond to a damping ratio of 0.707 and a natural frequency of 1 rad/sec. (8%)
- (b) Find the values of K_P and K_D so that the overshoot is zero and the rise time is less than 0.06 sec. (7%)

Figure 3

- 4. (15%) A block diagram is shown in Figure 4.
 - (a) Determine the transfer function Y(s)/R(s). (5%)
 - (b) Find the characteristic equation and its roots of the system. (5%)
 - (c) Determine the values of K that must be avoided if the system is controllable and observable. (5%)

系所組別: 自動化及控制研究所碩士班乙組

科 目: 控制系統

(總分為100分)

5. Suppose that a sinusoidal force $p(t) = P \sin \omega t$ is applied to the mechanical system as shown below. In this system, m denotes the mass, b denotes the viscous-friction coefficient, and k denotes the spring constant. Assume that displacement x is measured from the equilibrium position.

(1) Find the steady-state output.

(10%)

(2) Find the resonant frequency ω_m at which the amplitude is a maximum of the steady-state output. (10%)

Figure 5. Mechanical system.

6. For the liquid-level system shown below, the steady-state flow rate through the tanks is \overline{Q} and steady-state heads of tank 1 and tank 2 are $\overline{H_1}$ and $\overline{H_2}$, respectively. At t=0 the inflow rate is changed from \overline{Q} to $\overline{Q}+q$, where q is a small change in the inflow rate. The corresponding changes in the heads $(h_1$ and $h_2)$ and changes in flow rates $(q_1$ and $q_2)$ are assumed to be small. The capacitances of tank 1 and tank 2 are C_1 and C_2 , respectively. The resistance of the valve between the tanks is R_1 and that of the outflow valve is R_2 . Assuming q as the input and q_2 as the output, derive the transfer function for the system. (10%)

系所組別: 自動化及控制研究所碩士班乙組

科 目: 控制系統

(總分為100分)

7. Assume, in the circuit of figure shown below, that voltage e_i is applied to the input terminals and voltage e_o appears at the output terminals. In addition, assume that the input is sinusoidal and is given by $e_i(t) = E_i \sin \omega t$. Find the steady-state current i(t).

Figure 7. Electrical circuit

