國立臺灣科技大學101學年度碩士班招生試題

系所組別: 自動化及控制研究所碩士班甲組、乙組

科 目: 工程數學

(總分為100分)

1. Solve the following ordinary differential equations:

(1)
$$y'-xy^2-(1-2x)y-x=-1$$
 (10%)

(2)
$$y'' - y' - 12y = 2\sinh^2(x)$$
 (10%)

2. Use Laplace Transform method to solve the following equation. (15%)

$$y'+5y+6\int_{0}^{t}ydt=8H(t-4)$$

where
$$y(0) = 2$$
 and $H(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$

3. Consider a 3x3 matrix A.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

- (1) Find the eigenvalues and the corresponding eigenvectors. (10%)
- (2) Find a matrix P to diagonalize the matrix A. (5%)

國立臺灣科技大學101學年度碩士班招生試題

系所組別: 自動化及控制研究所碩士班甲組、乙組

科 目: 工程數學

(總分為100分)

4. Derive an expression for the steady temperatures $u=u(\rho,\phi)$ in a long rod, with a uniform semicircular cross section and occupying the region $0 \le \rho \le \alpha$, $0 \le \phi \le \pi$, which is insulated on its planar surface and maintained at temperatures $f(\phi)$ on the semicircular part in Problem 4. $u(\rho,\phi)$ satisfies Laplace's equation $\rho^2 u_{\rho\rho}(\rho,\phi) + \rho u_{\rho}(\rho,\phi) + u_{\phi\phi}(\rho,\phi) = 0$. (15%)

5. The compact form of trigonometric Fourier series for a periodic signal x(t) is $C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$. With the use of such a compact representation, obtain the trigonometric Fourier series for the signal $e^{-t/2}$ shown in Problem 5. Sketch the amplitude and phase with respect to $n\omega_0$ for $e^{-t/2}$. (20%)

Problem 5

6. Let $f(z) = \frac{2i}{4+iz}$. Find the Taylor expansion of f(z) about -3i and specify the radius of convergence. (15%)