國立臺北科技大學 101 學年度碩士班招生考試

系所組別:3722 有機高分子研究所乙組

第二節 材料科學與工程 試題 (選考)

第一頁 共一頁

注意事項:

- 1. 本試題共6題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- Explain following term (use graph or give an example):

[30%] (Each 6%)

- 1. Gas carburizing
- 2. Schottky imperfection
- 3 Intrinsic semiconductor
- 4 Recovery of cold-worked metal
- 5. Schmid's law

= [14%]

An arsenic-doped silicon wafer has an electrical resistivity of $7.50 \times 10^{-4} \,\Omega \cdot \text{cm}$ at 27°C . Assume complete ionization. [Assume $\mu_n = 0.1350 \,\text{m}^2/(\text{V} \cdot \text{s})$, $\mu_p = 0.048 \,\text{m}^2/(\text{V} \cdot \text{s})$.] What is the majority-carrier concentration (carriers per cubic centimeter)?

三 [12%]

The critical stress intensity (K_{IC}) for a material for a component of a design is 23.0 ksi $\sqrt{\text{in}}$. What is the critical stress that will cause fracture if the component contains an internal crack 0.13 in long? Assume Y = 1.

四. 【16%】 (Each 8%)

An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed diffraction peaks at the following 2 theta angles: 38.60°, 55.71°, 69.70°, 82.55°, 95.00°, and 107.67°. (The wavelength of the incoming radiation was 0.15405 nm.)

- a) Determine the crystal structure of the element
- b) Determine the lattice constant of the element

五 【12%】

Calculate a value for the density of FCC platinum in grams per cubic centimeter from its lattice constant a of 0.39239 nm and its atomic mass of 195.09 g/mol

六. 【16%】 (Each 8%)

- (a) In the solidification of a pure metal, what are the two energies involved? Write the equation for the total free-energy change involved in the homogeneous nucleation.
- (b) Illustrate graphically the energy changes associated with the formation of a nucleus during solidification vs. radius of a homogeneous nucleus or embryo. Mark critical radius of a homogeneous nucleus in the graph.