國立臺北科技大學 101 學年度碩士班招生考試

系所組別:3713 有機高分子研究所甲組

第二節 生物化學 試題 (選考)

第一頁 共四頁

注意事項:

- 1. 試題 1~25 共 25 題,配分共 50 分。
- 2. 試題 26 共 1 題,配分共 10 分。
- 3. 試題 27~34 共 8 題,配分共 40 分。
- 4. 請標明大題、子題編號作答,不必抄題。
- 5. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. When a mixture of glucose 6-phosphate and fructose 6-phosphate is incubated with the enzyme phosphohexose isomerase, the final mixture contains twice as much glucose 6-phosphate as fructose 6-phosphate. Which one of the following statements is most nearly correct, when applied to the reaction below? (R = 8.315 J/mol·K and T = 298 K, $\ln 0.5 = -0.693$)

Glucose 6-phosphate ↔ fructose 6-phosphate

- A) $\Delta G^{\prime \circ}$ is +1.7 kJ/mol.
- B) $\Delta G^{\prime o}$ is -1.7 kJ/mol.
- C) $\Delta G^{\prime o}$ is incalculably large and negative.
- D) $\Delta G^{\prime o}$ is incalculably large and positive.
- E) $\Delta G^{\prime \circ}$ is zero.
- 2. Which of the following best represents the backbone arrangement of two peptide bonds?
- A) C_{α} —N— C_{α} —C— C_{α} —C
- B) C_{α} —N—C—C—N— C_{α}
- D) $C-N-C_{\alpha}-C_{\alpha}-N$
- E) C_{α} — C_{α} — C_{α} — C_{α} — C_{α} — C_{α}
- 3. Compounds that generate nitrous acid (such as nitrites, nitrates, and nitrosamines) change DNA molecules by:
- A) breakage of phosphodiester bonds.
- B) deamination of bases.
- C) depurination.
- D) formation of thymine dimers.
- E) transformation of $A \rightarrow T$.

- Which of the following deoxyoligonucleotides will hybridize with a DNA containing the sequence (5')AGACTGGTC(3')?
- A) (5')CTCATTGAG(3')
- B) (5')GACCAGTCT(3')
- C) (5')GAGTCAACT(3')
- D) (5')TCTGACCAG(3')
- E) (5')TCTGGATCT(3')
- 5. In a highly basic solution, pH = 13, the dominant form of glycine is:
- A) NH₂—CH₂—COOH.
- B) NH₂—CH₂—COO⁻.
- C) NH₂—CH₃⁺—COO⁻.
- D) NH_3^+ — CH_2 —COOH.
- E) NH₃⁺—CH₂—COO⁻.
- 6. Enzymes are biological catalysts that enhance the rate of a reaction by:
- A) decreasing the activation energy.
- B) decreasing the amount of free energy released.
- C) increasing the activation energy.
- D) increasing the amount of free energy released.
- E) increasing the energy of the transition state.
- 7. Which one of the following is not among the six internationally accepted classes of enzymes?
- A) Hydrolases
- B) Ligases
- C) Polymerases
- D) Oxidoreductases
- E) Transferases
- 8. Kendrew's studies of the globular myoglobin structure demonstrated that:
- A) "corners" between α -helical regions invariably lacked proline residue.
- B) highly polar or charged amino acid residues tended to be located interiorally.
- C) myoglobin was completely different from hemoglobin, as expected.
- D) the structure was very compact, with virtually no internal space available for water.
- E) the α helix predicted by Pauling and Corey was not found in myoglobin.
- 9. The three-dimensional structure of a protein is determined primarily by:
- A) electrostatic guidance from nucleic acid structure.
- B) how many amino acids are in the protein.
- C) hydrophobic interaction with lipids that provide a folding framework.
- D) modification during interactions with ribosomes.
- E) the sequence of amino acids in the protein.

注意:背面尚有試題

	第二頁 共四頁				
10. D-Glucose is called a reducing sugar because it undergoes an oxidation-reduction reaction at the					
anomeric carbon. One of the products of this reaction is:					
	A) D-galactose.				
	D-gluconate.				
	D-glucuronate.				
,	D-ribose.				
E)	muramic acid.				
11	Doctriction and mass				
	Restriction enzymes:				
	act at the membrane to restrict the passage of certain molecules into the cell.				
B)					
C)	* *				
D)					
E)	catalyze the addition of a certain amino acid to a specific tRNA.				
10	Will be falle wing statements shout alveanagenesis in enimal calls is true?				
	Which of the following statements about gluconeogenesis in animal cells is true?				
•	A rise in the cellular level of fructose-2,6-bisphosphate stimulates the rate of gluconeogenesis.				
B)	An animal fed a large excess of fat in the diet will convert any fat not needed for energy production				
	into glycogen to be stored for later use.				
C)	The conversion of fructose 1,6-bisphosphate to fructose 6-phosphate is <i>not</i> catalyzed by				
	phosphofructokinase-1, the enzyme involved in glycolysis.				
D)	The conversion of glucose 6-phosphate to glucose is catalyzed by hexokinase, the same enzyme				
	involved in glycolysis.				
E)	The conversion of phosphoenol pyruvate to 2-phosphoglycerate occurs in two steps, including a				
	carboxylation.				
10	The state of the protein				
	13. The amino acid substitution of Val for Glu in Hemoglobin S results in aggregation of the protein				
	because of interactions between molecules.				
	covalent				
B)	disulfide				
C)	hydrogen bonding				
D)	hydrophobic				
E)	ionic				
1 4	Saturated fatty acids are degraded by the stepwise reactions of β oxidation, producing acetyl-CoA.				
	Under aerobic conditions, how many ATP molecules would be produced as a consequence of				
	removal of each acetyl-CoA?				
A)					
B)					
C)	4				
D)					
E)	6				
	·				

- 15. The PCR reaction mixture does *not* include:
- A) all four deoxynucleoside triphosphates.
- B) DNA containing the sequence to be amplified.
- C) DNA ligase.
- D) heat-stable DNA polymerase.
- E) oligonucleotide primer(s).
- 16. Almost all of the oxygen (O_2) one consumes in breathing is converted to:
- A) acetyl-CoA.
- B) carbon dioxide (CO_2) .
- C) carbon monoxide and then to carbon dioxide.
- D) none of the above.
- E) water.
- 17. Which of the following statements about sterols is true?
- A) The principal sterol of animal cells is ergosterol.
- B) Sterols are found in the membranes of all living cells.
- C) Sterols are soluble in water, but less so in organic solvents such as chloroform.
- D) Stigmasterol is the principal sterol in fungi.
- E) All sterols share a fused-ring structure with four rings.
- 18. For amino acids with neutral R groups, at any pH below the pI of the amino acid, the population of amino acids in solution will have:
- A) a net negative charge.
- B) a net positive charge.
- C) no charged groups.
- D) no net charge.
- E) positive and negative charges in equal concentration.

19.In the laboratory, recombinant plasmids are commonly introduced into bacterial cells by:

- A) electrophoresis a gentle low-voltage gradient draws the DNA into the cell.
- B) infection with a bacteriophage that carries the plasmid.
- C) microinjection.
- D) mixing plasmids with an extract of broken cells.
- E) transformation heat shock of the cells incubated with plasmid DNA in the presence of CaCl₂.

20. The conversion of glutamate to an α -ketoacid and NH₄⁺:

- A) does not require any cofactors.
- B) is a reductive deamination.
- C) is accompanied by ATP hydrolysis catalyzed by the same enzyme.
- D) is catalyzed by glutamate dehydrogenase.
- E) requires ATP.

第三頁 共四頁

- 21. Which of these is a general feature of the lipid bilayer in all biological membranes?
- A) Individual lipid molecules are free to diffuse laterally in the surface of the bilayer.
- B) Individual lipid molecules in one face (monolayer) of the bilayer readily diffuse (flip-flop) to the other monolayer.
- C) Polar, but uncharged, compounds readily diffuse across the bilayer.
- D) The bilayer is stabilized by covalent bonds between neighboring phospholipid molecules.
- E) The polar head groups face inward toward the inside of the bilayer.
- 22. Which of the following is a dominant feature of the outer membrane of the cell wall of gram-negative bacteria?
- A) Amylose
- B) Cellulose
- C) Glycoproteins
- D) Lipopolysaccharides
- E) Lipoproteins
- 23. Humans maintain a nearly constant level of hemoglobin by continually synthesizing and degrading it. This is an example of a(n):
- A) dynamic steady state.
- B) equilibrium state.
- C) exergonic change.
- D) free-energy change.
- E) waste of energy.
- 24. Which of these amino acids can be directly converted into a citric acid cycle intermediate by transamination?
- A) glutamic acid
- B) serine
- C) threonine
- D) tyrosine
- E) proline
- 25. Compare the following sequences taken from four different proteins, and select the answer that best characterizes their relationships.

	A	В	C
1	DVEKGKKIDIMKCS	HTVEKGGKHKTGPNLH	GLFGRKTGQAPGYSYT
2	DVQRALKIDNNLGQ	HTVEKGAKHKTAPNVH	GLADRIAYQAKATNEE
3	LVTRPLYIFPNEGQ	HTLEKAAKHKTGPNLH	ALKSSKDLMFTVINDD
4	FFMNEDALVARSSN	HQFAASSIHKNAPOFH	NLKDSKTYLKPVISET

- A) Based only on sequences in column B, protein 4 reveals the greatest evolutionary divergence.
- B) Comparing proteins 1 and 2 in column A reveals that these two proteins have diverged the most throughout evolution.

- C) Protein 4 is the protein that shows the greatest overall homology to protein 1.
- D) Proteins 2 and 3 show a greater evolutionary distance than proteins 1 and 4.
- E) The portions of amino acid sequence shown suggest that these proteins are completely unrelated.
- 26. Match these molecules with their biological roles.
- (a) glycogen (b) starch (c) trehalose (d) chitin (e) cellulose (f) peptidoglycan
- (g) hyaluronate (h) proteoglycan (i) Mass spectrometry (j) SDS (sodium dodecyl sulfate)
- ___ viscosity, lubrication of extracellular secretions
- ___ carbohydrate storage in plants
- ___ transport/storage in insects
- exoskeleton of insects
- ___ structural component of bacterial cell wall
- ___ structural component of plant cell walls
- ___ extracellular matrix of animal tissues
- ___ carbohydrate storage in animal liver
- ____ determine protein molecular weight
- separate proteins exclusively on the basis of molecular weight
- 27.Proteins are constantly being synthesized in a living cell. Why doesn't the number of protein molecules become too great for the cell to contain, leading to cell destruction?
- 28.Describe the concept of "induced fit" in ligand-protein binding.
- 29. In the following structure:

- (a) How many of the monosaccharide units are furanoses and how many are pyranoses? (b) What is the linkage between the two monosaccharide units? (c) Is this a reducing sugar? Explain.
- 30. How are a nucleoside and a nucleotide similar and how are they different?
- 31. The citric acid cycle is frequently described as the major pathway of aerobic catabolism, which means that it is an oxygen-dependent degradative process. However, none of the reactions of the cycle directly involves oxygen as a reactant. Why is the pathway oxygen-dependent?
- 32. Why are glycine and proline often found within a β turn?
- 33. Fifteen μ g of an enzyme of M_r 30,000 working at V_{max} catalyzes the conversion of 60 μ mol of substrate into product in 3 min. What is the enzyme's turnover number?

注意:背面尚有試題

34. Describe two major differences between chemical synthesis of polypeptides and synthesis of polypeptides in the living cell.

-