國立臺北科技大學 101 學年度碩士班招生考試

系所組別:3712 有機高分子研究所甲組

第二節 物理化學 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共九題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

<< 請寫出計算或推導過程 >> <<常用物理常數請參考最後一頁>>

- 1. Calculate the final temperature and the change in internal energy when 500 J of energy is transferred as heat to 0.9 mol $O_{2(g)}$ at 298 K and 1.00 atm at (1)constant volume; (2) constant pressure. Treat the gas as ideal. (16 %)
- 2. Allow 1.00 mol of idea gas molecules expand from 8.00 L to 20.00 L at 292 K. Please calculate the ΔS in the isothermal reversible expansion process. (4 $\frac{1}{2}$)
- 3. The standard reaction enthalpy for the hydrogenation of propene is -124 KJ/mol. CH₂=CHCH₃(g) + H₂(g) → CH₃CH₂CH₃(g)
 The standard reaction enthalpy for the combustion of propane is -2220 KJ/mol. CH₃CH₂CH₃(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(l)
 Given standard enthalpy of H₂(g) + 1/2 O₂(g) → H₂O(l) ΔH⁰ = -286 KJ/mol
 Calculate the standard enthalpy of combustion of propene. (5 分)
- 4. Calculate the equilibrium constant for the ammonia synthesis reaction at 298 K. (10 分)

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$$

$$\Delta G_f^0(NH_3, g) = -16.45 \ KJ / mol$$

5. NO and O₂ are two important molecules in our life. The chemical reaction of these two molecules is given as following,

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Given some experimental data as following,

Experiment	Initial concentration (mol/L)		Initial Rate
	NO	O_2	(mol NO) L ⁻¹ s ⁻¹
1	0.012	0.020	0.102
2	0.024	0.020	0.408
3	0.024	0.040	0.816

Please write the rate law for the consumption of NO and determine the value of rate constant k. (10 %)

6. Cyclopropane is the smallest cyclic hydrocarbon. Because its 60° bond angles allow poor orbital overlap, its bonds are weak. As a result, it is thermally unstable and rearranges to propene at 1000°C via the following first-order reaction

$$H_2C \longrightarrow CH_2$$
 (g) $\xrightarrow{\Delta}$ $H_3C - CH = CH_2$ (g)

The rate constant is $9.2s^{-1}$, (1) What is the half-life of the reaction? (2) How long does it take for the concentration of cyclopropane to reach one-quarter of the initial value? (10 %)

7. The decomposition of hydrogen iodide,

$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

has rate constants of $9.51*10^{-9}$ L/mol·s at 500 K, and $1.10*10^{-5}$ L/mol·s at 600 K. Please find the activation energy Ea = ? (10 %)

8. (1) Given a particle moving in a one dimensional box with an infinite potential well as following, please solve the Schrödinger equation to obtain the energy levels and its corresponding state function. (10 分)

$$V(x) = 0 \text{ if } 0 \le x \le l$$

$$V(x) = \infty$$
 if $x > l$ or $x < 0$

- (2) Please calculate expectation value of $\langle x \rangle$ and $\langle p_x \rangle$. (10 %)
- (3) Based on the uncertainty principle, $\Delta x \Delta p_x \ge h/4\pi$, please calculate the lowest energy of particle in a box case as in (1). (5 %)

注意:背面尚有試題

第二頁 共二頁

9. Evaluate the following commutator results (10 分)

(1)
$$\left[\hat{x}, \hat{H}\right] = ?$$
 (2) $\left[\hat{L}^2, \hat{L}_x\right] = ?$

Physical constants:

Gas Constant : R = 0.0821 atm L/mol-K = 8.314 J/mol-K

Avogadro constant $N_A = 6.022 \times 10^{23} / \text{mol}$

Atomic Properties

Electron charge : $e = 1.602 \times 10^{-19} \text{ C}$; Electron rest mass : $m_e = 9.109 \times 10^{-31} \text{ kg}$

Neutron rest mass : $m_n = 1.675 \times 10^{-27} \text{ kg}$; Proton rest mass : $mp = 1.673 \times 10^{-27} \text{ kg}$

Fundamental Constants

Planck's constant : $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$; Boltzmann's constant : $k = 1.381 \times 10^{-23} \text{ J/K}$

Speed of light in a vacuum: c= 2.998 x 10⁸ m/s

Unit equalities:

Energy

 $1 J = 1 kg m^2 / s^2 = 1 C V$; 1 cal = 4.184 J; 1 L-atm = 101.3 J

Pressure

 $1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$; $1 \text{Bar} = 1 \times 10^5 \text{ Pa}$