國立臺北科技大學 101 學年度碩士班招生考試

系所組別:2401、2402、2403、2404 光電工程系碩士班

第二節 電磁學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共六題,配分共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- When a spacecraft reenters the earth's atmosphere, its speed and temperature ionize the surrounding atoms (molecules) and generate plasma. The electron density (N) in the neighborhood is 4×10^8 cm⁻³. If the value of e, m, and ε_0 are 1.602×10^{-19} (C), 9.107×10^{-31} (kg), and $(1/36\pi)\times10^{-19}$ (F/m).
 - (1) Find the plasma frequency (f_p) . (5%)
 - (2) What the frequency (f) is must usage in radio communication between the spacecraft and the mission controllers on earth. (5%)
- 2. A positive point charge Q is at the center of a spherical dielectric shell of an inner radius R_i and an outer radius R_o . The dielectric constant of the shell is \mathcal{E}_I . Find the electric field E, the potential V, the electric displacement D, and the polarization P in three regions:
 - (1) $R > R_o$, (10%)
 - (2) $R_i < R < R_o$, (10%)
 - (3) $R \le R_i (10\%)$
- 3. A conducting material of uniform thickness h and conductivity σ has the shape of a quarter of a flat circular washer, with inner radius a and outer radius b, as shown in Fig. 3. We first assume a potential difference V_0 between the end faces, say V = 0 on the end face at y = 0 and $V = V_0$ on the end face at x = 0. Determine the resistance R between the end faces. R

Fig. 3

- 4. A cladded-core optical fiber shows in Fig. 4, where $n_1 > n_2$ and $n_0 = 1$.
 - (1) Derive and express the maximum angle of incidence (θ_a) and the numerical aperture (NA) in terms of n_0 , n_1 , and n_2 for meridional rays incident on the core's end face to be trapped inside the core by total internal reflection (10%)
 - (2) Find θ_a and NA. If $n_1 = 1.50$, $n_2 = 1.48$. (5%)

Fig. 4

- 5. An air-filled rectangular waveguide of inside dimensions 7 cm \times 3.5 cm operates in the dominant TE_{10} mode as shown in Fig. 5. The waves are propagating in the z direction.
 - (1) Find the cutoff frequency (f_c) (5%)
 - (2) Determine the phase velocity (v_g) of the wave in the guide at a frequency of 5.0 GHz (5%).
 - (3) Determine the guided wavelength (λ_g) at the same frequency. (5%)

Fig. 5

6. An isolated system consists of three very long parallel conducting wires (ℓ_0, ℓ_1, ℓ_2) . The axes of all three wires lie in a plane. The two outside wires (ℓ_0, ℓ_2) are of a radius b and both are at a distance d = 500b from a center wire (ℓ_1) of a radius 2b. Determine the partial capacitance per unit length (C_{12}, C_{10}, C_{20}) . (20%)