國立臺北科技大學 101 學年度碩士班招生考試

系所組別:1521、1522、1523 自動化科技研究所 <u>乙組</u>

第一節 工程數學 試題

第一頁 共一頁

注意事項:

- 1. 本試題共六題,配分共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1.(15%) For vector space
 - (1)(5%)Let v_1, v_2, \dots, v_m are the vectors of vector space V. Explain that linearly dependent and linearly independent for v_1, v_2, \dots, v_m .
 - (2)(5%)Are cos(x) and sin(x) linearly dependent or linearly independent? Why?

(3)(5%)Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, $C = \begin{bmatrix} -1 & -2 \\ -3 & -5 \end{bmatrix}$, $D = \begin{bmatrix} -1 & -2 \\ 0 & -2 \end{bmatrix}$. Are A, B, C,

- D, linearly dependent or linearly independent? Why?
- 2.(20%) If u and v are any two vectors in an inner product space V, then

$$|\langle u, v \rangle| \leq ||u|| ||v||$$

Equality holds if and only if u and v are linearly dependent. Please prove this Cauchy-Schwarz theorem.

- 3. (20%) For each matrix, find the characteristic equation, and the eigenvalues and associated eigenvectors
 - (1)(10%)

(2)(10%)

5 2

4.(15%) Find an orthonormal basis for this subspace of R^4

5. (15%) Show that this gives the equation of a line in \mathbb{R}^2 thru (x_2, y_2) and (x_3, y_3) .

$$\begin{vmatrix} x & x_2 & x_3 \\ y & y_2 & y_3 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

6 (15%) Solve the differential equations

$$mx_1'' + (k + k_1)x_1 - k_1x_2 = 0$$

$$mx_2'' + (k + k_1)x_2 - k_1x_1 = 0$$

where m, k, and k_1 are positive real number.